Skip to main content

Abstract

Structural health monitoring using smart sensors and actuators largely relies on the appropriate choice of smart materials. The smart materials can be categorized into four major groups based on the driving mechanisms; these are piezoelectric, magnetostrictive, phase-transition-dependent, and electro-/magnetorheological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breitbach EJ, Lammering R, Meleher J, Nitzsche F (1994) Smart structures research in aerospace engineering. In: Proceedings of SPIE second European conference on smart structure and materials, vol 2361

    Google Scholar 

  2. Newnhan RE, Ruschan GR (1991) Smart electronic systems. J Am Ceram Soc 74:463–480

    Google Scholar 

  3. Coghlan A (1992) Smart ways to treat materials. New Sci 13:27–29

    Google Scholar 

  4. Bunk WGJ (1991) Advanced structural and functional materials. Springer, Berlin

    Google Scholar 

  5. Stanway R, Sporston JL (1994) Electro-rheological fluids, a systematic approach to classify modes of operation. Trans ASME J Dyn Syst Meas Control 504:116–198

    Google Scholar 

  6. Skinner DP, Newnham RE, Cross LE (1978) Flexible composite transducers. Mater Res Bull 13:599–607

    Google Scholar 

  7. Crawley EF (1994) Intelligent structures for aerospace: a technology overview and assessment. AIAA J 32(8):1689–1699

    Google Scholar 

  8. Baz A, Poh S, Ro J, Gilheany J (1995) Control of the natural frequencies of NiTiNOL reinforced composite beams. J Sound Vib 185(1):171–185

    Google Scholar 

  9. Srinivasan AV, Gutts DG, Schetky LM (1991) Thermal and mechanical considerations in using shape memory alloys to control vibration in flexible structures. Metall Trans A 22A:623–627

    Google Scholar 

  10. Measures RM (1989) Smart structures with nerves of glass. Aerosp Sci 26:289–351

    Google Scholar 

  11. Kordonsky WI (1993) Magnetorheological effect as a base of new devices and technology. J Magn Magn Mater 122:395–398

    Google Scholar 

  12. Berlincourt D (1981) Piezoelectric ceramics: characteristics and applications. J Acoust Soc Am 70(6):1586–1595

    Google Scholar 

  13. Crawley EF, Luis JD (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25(10):1371–1385

    Google Scholar 

  14. Sessler GM (1981) Piezoelectricity in Polyvinylideneflouride. J Acoust Soc Am 70(6):1567–1576

    Google Scholar 

  15. Niezrecki C, Brei D, Balakrishnan S, Moskalik A (2001) Piezoelectric actuation: state of the art. Shock Vib Dig, 269–280

    Google Scholar 

  16. Crawley EF, Anderson EL (1991) Detailed models of piezoceramic actuation of beams. J Intell Mater Syst Struct 1(1):4–25

    Google Scholar 

  17. Dosch JJ, Inman DJ, Garcia E (1992) A self-sensing piezoelectric actuator for collocated control. J Intell Mater Syst Struct 3:166–183

    Google Scholar 

  18. Vipperman JS, Clark RL (1994) Implementation of an adaptive piezoelectric sensoriactures. J Acoust Soc Am 96(1):294–299

    Google Scholar 

  19. Clark AE (1980) Magnetostrictive rare earth Fe compounds. In: Ferromagnetic materials, Chap. 7

    Google Scholar 

  20. Greenough RD, Jenner AG, Schulze MP, Wilkinson AJ (1991) The properties and applications of magnetostrictive rare-earth compounds. J Magn Magn Mater 101:75–80

    Google Scholar 

  21. Sandlund L, Fahlander M, Cedell T, Brestorff JB, Clark AE (1994) Magnetostriction elastic moduli and coupling factors of composite Terfenol-D. J Appl Phys 75:5656–5658

    Google Scholar 

  22. Anjanappa M, Bi J (1994) Magnetostrictive mini actuators for smart structure applications. Smart Mater Struct 3:383–390

    Google Scholar 

  23. Nguyen C, Kornmann X (2006) A comparison of dynamic piezoactuation of fiber-based actuators and conventional piezo patches. J Intell Mater Syst Struct 17:45–56

    Google Scholar 

  24. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  25. Tanaka K (1986) A thermomechanical sketch of shape memory effect: one dimensional tensile behavior. Res Mechanica 18:251–263

    Google Scholar 

  26. Liang C, Rogers CA (1997) One dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8:285–302

    Google Scholar 

  27. Brinson LC (1993) One dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions. J Intell Mater Syst Struct 4:229–242

    Google Scholar 

  28. Tandon I, Mallik AK, Gupta Bhaya P (1999) Performance characteristics of a vibration isolator with electro-rheological fluids. J Sound Vib 219(3):395–404

    Google Scholar 

  29. Jung WJ, Jeong WB, Hong SR, Choi SB (2004) Vibration control of a flexible beam structure using squeeze-mode ER mount. J Sound Vib 273:185–199

    Google Scholar 

  30. Bandopadhya D, Bhattacharya B, Dutta A (2007) Active vibration control strategy for a single link flexible manipulator using ionic polymer metal composite. J Intell Mater Syst Struct (On line version July 10, 2007)

    Google Scholar 

  31. Tobushi H, Okumura K, Hayashi S, Ito N (2001) Thermo-mechanical constitutive model of shape memory polymer. Mech Mater 33:545–554

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harutoshi Ogai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer (India) Private Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogai, H., Bhattacharya, B. (2018). Introduction to Smart Materials. In: Pipe Inspection Robots for Structural Health and Condition Monitoring. Intelligent Systems, Control and Automation: Science and Engineering, vol 89. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3751-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3751-8_7

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3749-5

  • Online ISBN: 978-81-322-3751-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics