Advertisement

Melatonin, a Neuroprotective Agent: Relevance for Stress-Induced Neuropsychiatric Disorders

  • Piyarat Govitrapong
  • Kasima Ekthuwapranee
  • Nootchanart Ruksee
  • Parichart Boontem
Chapter

Abstract

Neuropsychiatric disorders commonly refer to psychiatric diseases caused by brain disorders. The main components of neuropsychiatric symptoms are cognitive impairment, depression, anxiety, paranoid-hallucinatory states, and behavioral and personality changes. Chronic stress is a major factor in depressive disorders. Dysregulation of hypothalamo-pituitary-adrenal axis is a common characteristic of depression. The cellular and molecular mechanisms underlying the role of stress in inducing these symptoms will be discussed. Melatonin, a hormone mainly secreted in the pineal gland, has pleiotropic neuropsychiatric actions mediated via several signaling pathways. It significantly prevented stress-induced memory deficits and depressive behavior; decreased the expressions of brain-derived neurotrophic factor (BDNF), glucocorticoid receptor (GR), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and synaptophysin; and reduced bromodeoxyuridine (BrdU)-labeled proliferating cells, doublecortin, and neurogenesis. The neurogenesis hypothesis of depression will be discussed, and the role of melatonin in this hypothesis will be presented. According to the novel function of new neurons in the stress response regulation, it is possible that melatonin can be used as a therapeutic agent to protect neurons and prevent the decrease of neurogenesis, which in turn reverses stress-induced depression.

Keywords

Glucocorticoid Receptor Dentate Gyrus Hippocampal Neurogenesis Melatonin Receptor Chronic Unpredictable Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support from the Thailand Research Fund (grant No.DPG5780001) and a Mahidol University Research Grant to PG is gratefully acknowledged.

References

  1. 1.
    Schmidt PJ, Murphy JH, Haq N, Rubinow DR, Danaceau MA. Stressful life events, personal losses, and perimenopause-related depression. Arch Womens Ment Health. 2004;7(1):19–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Miyagawa K, Tsuji M, Fujimori K, Takeda H. Update on epigenetic regulation in pathophysiologies of stress-induced psychiatric disorders. Nihon Shinkei Seishin Yakurigaku Zasshi. 2010;30(4):153–60.PubMedGoogle Scholar
  3. 3.
    Knapman A, Heinzmann JM, Hellweg R, Holsboer F, Landgraf R, Touma C. Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders. J Psychiatr Res. 2010;44(9):566–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Makino S, Hashimoto K, Gold PW. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav. 2002;73(1):147–58.CrossRefPubMedGoogle Scholar
  5. 5.
    Drew MR, Hen R. Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol Disord Drug Targets. 2007;6(3):205–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Nikisch G. Involvement and role of antidepressant drugs of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor function. Neuro Endocrinol Lett. 2009;30(1):11–6.PubMedGoogle Scholar
  7. 7.
    Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A. 1996;93(9):3908–13.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56(9):640–50.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro) inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:744–59.CrossRefPubMedGoogle Scholar
  10. 10.
    Richter-Levin G. The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist. 2004;10(1):31–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142(1):1–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Kronfeld-Schor N, Einat H. Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology. 2012;62(1):101–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P. Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol. 2014;143C:72–80.CrossRefGoogle Scholar
  14. 14.
    Tongjaroenbuangam W, Ruksee N, Mahanam T, Govitrapong P. Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain. Neurochem Int. 2013;63(5):482–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Keenan PA, Jacobson MW, Soleymani RM, Mayes MD, Stress ME, Yaldoo DT. The effect on memory of chronic prednisone treatment in patients with systemic disease. Neurology. 1996;47(6):1396–402.CrossRefPubMedGoogle Scholar
  16. 16.
    Starkman MN, Schteingart DE, Schork MA. Depressed mood and other psychiatric manifestations of Cushing’s syndrome: relationship to hormone levels. Psychosom Med. 1981;43(1):3–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry. 1992;32(9):756–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Kostoglou-Athanassiou I, Treacher DF, Wheeler MJ, Forsling ML. Melatonin administration and pituitary hormone secretion. Clin Endocrinol (Oxf). 1998;48(1):31–7.CrossRefGoogle Scholar
  19. 19.
    Campino C, Valenzuela FJ, Torres-Farfan C, Reynolds HE, Abarzua-Catalan L, Arteaga E, et al. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Horm Metab Res. 2011;43(5):337–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Hirsch-Rodriguez E, Imbesi M, Manev R, Uz T, Manev H. The pattern of melatonin receptor expression in the brain may influence antidepressant treatment. Med Hypotheses. 2007;69(1):120–4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sotthibundhu A, Phansuwan-Pujito P, Govitrapong P. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res. 2010;49(3):291–300.CrossRefPubMedGoogle Scholar
  22. 22.
    Imbesi M, Uz T, Yildiz S, Arslan AD, Manev H. Drug- and region-specific effects of protracted antidepressant and cocaine treatment on the content of melatonin MT(1) and MT(2) receptor mRNA in the mouse brain. Int J Neuroprot Neuroregener. 2006;2:185–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Masson-Pevet M. Melatonin in the circadian system. J Soc Biol. 2007;201(1):77–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Hansen MV, Andersen LT, Madsen MT, Hageman I, Rasmussen LS, Bokmand S, et al. Effect of melatonin on depressive symptoms and anxiety in patients undergoing breast cancer surgery: a randomized, double-blind, placebo-controlled trial. Breast Cancer Res Treat. 2014;145(3):683–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Haridas S, Kumar M, Manda K. Melatonin ameliorates chronic mild stress induced behavioral dysfunctions in mice. Physiol Behav. 2013;119:201–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Fonken LK, Nelson RJ. Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res. 2013;243:74–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Srinivasan V, Zakaria R, Othman Z, Lauterbach EC, Acuna-Castroviejo D. Agomelatine in depressive disorders: its novel mechanisms of action. J Neuropsychiatry Clin Neurosci. 2012;24(3):290–308.CrossRefPubMedGoogle Scholar
  28. 28.
    Kirshenbaum GS, Burgess CR, Dery N, Fahnestock M, Peever JH, Roder JC. Attenuation of mania-like behavior in Na(+), K(+)-ATPase alpha3 mutant mice by prospective therapies for bipolar disorder: melatonin and exercise. Neuroscience. 2014;260:195–204.CrossRefPubMedGoogle Scholar
  29. 29.
    Rawashdeh O, Dubocovich ML. Long-term effects of maternal separation on the responsiveness of the circadian system to melatonin in the diurnal nonhuman primate (Macaca mulatta). J Pineal Res. 2014;56(3):254–63.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guaiana G, Gupta S, Chiodo D, Davies SJ, Haederle K, Koesters M. Agomelatine versus other antidepressive agents for major depression. Cochrane Database Syst Rev. 2013;12:CD008851.Google Scholar
  31. 31.
    Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706–17.PubMedGoogle Scholar
  32. 32.
    Presman DM, Hoijman E, Ceballos NR, Galigniana MD, Pecci A. Melatonin inhibits glucocorticoid receptor nuclear translocation in mouse thymocytes. Endocrinology. 2006;147(11):5452–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59(12):1116–27.CrossRefPubMedGoogle Scholar
  34. 34.
    de Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature. 1998;394(6695):787–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Nicholas A, Munhoz CD, Ferguson D, Campbell L, Sapolsky R. Enhancing cognition after stress with gene therapy. J Neurosci. 2006;26(45):11637–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26(35):9022–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Hansson L. Determinants of quality of life in people with severe mental illness. Acta Psychiatr Scand Suppl. 2006;429:46–50.CrossRefGoogle Scholar
  38. 38.
    Tahera Y, Meltser I, Johansson P, Hansson AC, Canlon B. Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology. 2006;147(9):4430–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology. 2005;51(4):234–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):1068–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry. 2004;9(6):609–20. 544.CrossRefPubMedGoogle Scholar
  42. 42.
    Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, et al. Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol. 2008;28(4):569–79.CrossRefPubMedGoogle Scholar
  43. 43.
    Cuzzocrea S, Thiemermann C, Salvemini D. Potential therapeutic effect of antioxidant therapy in shock and inflammation. Curr Med Chem. 2004;11(9):1147–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Manda K, Reiter RJ. Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol. 2010;90(1):60–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Ramirez-Rodriguez G, Klempin F, Babu H, Benitez-King G, Kempermann G. Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology. 2009;34(9):2180–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Quiros I, Mayo JC, Garcia-Suarez O, Hevia D, Martin V, Rodriguez C, et al. Melatonin prevents glucocorticoid inhibition of cell proliferation and toxicity in hippocampal cells by reducing glucocorticoid receptor nuclear translocation. J Steroid Biochem Mol Biol. 2008;110(1–2):116–24.CrossRefPubMedGoogle Scholar
  47. 47.
    Kim YH, Lee SH, Mun KC. Effect of melatonin on antioxidant status in the plasma of cyclosporine-treated rats. Transplant Proc. 2002;34(7):2652–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci. 2004;29(6):417–26.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Detanico BC, Piato AL, Freitas JJ, Lhullier FL, Hidalgo MP, Caumo W, et al. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur J Pharmacol. 2009;607(1–3):121–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Kim MJ, Kim HK, Kim BS, Yim SV. Melatonin increases cell proliferation in the dentate gyrus of maternally separated rats. J Pineal Res. 2004;37(3):193–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res. 2002;32(3):173–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, et al. Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett. 2006;393(1):23–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Imbesi M, Uz T, Dzitoyeva S, Manev H. Stimulatory effects of a melatonin receptor agonist, ramelteon, on BDNF in mouse cerebellar granule cells. Neurosci Lett. 2008;439(1):34–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Gomez M, Esparza JL, Nogues MR, Giralt M, Cabre M, Domingo JL. Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med. 2005;38(1):104–11.CrossRefPubMedGoogle Scholar
  55. 55.
    Ramirez-Rodriguez G, Ortiz-Lopez L, Dominguez-Alonso A, Benitez-King GA, Kempermann G. Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res. 2011;50(1):29–37.CrossRefPubMedGoogle Scholar
  56. 56.
    Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol. 2010;8(3):218–27.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niyaz M, et al. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol. 2008;22(3):546–58.CrossRefPubMedGoogle Scholar
  58. 58.
    Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci U S A. 2009;106(2):647–52.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23(1):349–57.PubMedGoogle Scholar
  60. 60.
    Franklin TB, Murphy JA, Myers TL, Clarke DB, Currie RW. Enriched environment during adolescence changes brain-derived neurotrophic factor and TrkB levels in the rat visual system but does not offer neuroprotection to retinal ganglion cells following axotomy. Brain Res. 2006;1095(1):1–11.CrossRefPubMedGoogle Scholar
  61. 61.
    Takei N, Kuramoto H, Endo Y, Hatanaka H. NGF and BDNF increase the immunoreactivity of vesicular acetylcholine transporter in cultured neurons from the embryonic rat septum. Neurosci Lett. 1997;226(3):207–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23(5):477–501.CrossRefPubMedGoogle Scholar
  63. 63.
    Kunugi H, Ida I, Owashi T, Kimura M, Inoue Y, Nakagawa S, et al. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a Multicenter Study. Neuropsychopharmacology. 2006;31(1):212–20.PubMedGoogle Scholar
  64. 64.
    Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience. 2010;165(4):1301–11.CrossRefPubMedGoogle Scholar
  65. 65.
    Vellucci SV, Parrott RF, Mimmack ML. Down-regulation of BDNF mRNA, with no effect on trkB or glucocorticoid receptor m RNAs, in the porcine hippocampus after acute dexamethasone treatment. Res Vet Sci. 2001;70(2):157–62.CrossRefPubMedGoogle Scholar
  66. 66.
    Mizuno M, Yamada K, He J, Nakajima A, Nabeshima T. Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem. 2003;10(2):108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol. 1998;80(1):452–7.PubMedGoogle Scholar
  68. 68.
    Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci. 2007;35(2):208–19.CrossRefPubMedGoogle Scholar
  69. 69.
    Weaver DR, Rivkees SA, Reppert SM. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J Neurosci. 1989;9(7):2581–90.PubMedGoogle Scholar
  70. 70.
    Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI, et al. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int. 1998;32(1):69–75.CrossRefPubMedGoogle Scholar
  71. 71.
    Sutcu R, Yonden Z, Yilmaz A, Delibas N. Melatonin increases NMDA receptor subunits 2A and 2B concentrations in rat hippocampus. Mol Cell Biochem. 2006;283(1–2):101–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Reiter RJ, Manchester LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol. 2010;8(3):194–210.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Haynes LE, Griffiths MR, Hyde RE, Barber DJ, Mitchell IJ. Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: implications for mood disorders. Neuroscience. 2001;104(1):57–69.CrossRefPubMedGoogle Scholar
  74. 74.
    Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T, et al. Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J. 2005;19(10):1359–61.PubMedGoogle Scholar
  75. 75.
    Mutsaers HA, Tofighi R. Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells. Neurotox Res. 2012;22(2):127–37.CrossRefPubMedGoogle Scholar
  76. 76.
    Suwanjang W, Abramov AY, Govitrapong P, Chetsawang B. Melatonin attenuates dexamethasone toxicity-induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J Steroid Biochem Mol Biol. 2013;138:116–22.CrossRefPubMedGoogle Scholar
  77. 77.
    Konakchieva R, Mitev Y, Almeida OF, Patchev VK. Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology. 1998;67(3):171–80.CrossRefPubMedGoogle Scholar
  78. 78.
    Sainz RM, Mayo JC, Reiter RJ, Antolin I, Esteban MM, Rodriguez C. Melatonin regulates glucocorticoid receptor: an answer to its antiapoptotic action in thymus. FASEB J. 1999;13(12):1547–56.PubMedGoogle Scholar
  79. 79.
    Kiefer TL, Lai L, Yuan L, Dong C, Burow ME, Hill SM. Differential regulation of estrogen receptor alpha, glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res. 2005;38(4):231–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Mendez IA, Montgomery KS, LaSarge CL, Simon NW, Bizon JL, Setlow B. Long-term effects of prior cocaine exposure on Morris water maze performance. Neurobiol Learn Mem. 2008;89(2):185–91.CrossRefPubMedGoogle Scholar
  81. 81.
    Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870–3.CrossRefPubMedGoogle Scholar
  82. 82.
    Gupta S, Haldar C. Physiological crosstalk between melatonin and glucocorticoid receptor modulates T-cell mediated immune responses in a wild tropical rodent, Funambulus pennanti. J Steroid Biochem Mol Biol. 2013;134:23–36.CrossRefPubMedGoogle Scholar
  83. 83.
    Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406–17.CrossRefPubMedGoogle Scholar
  84. 84.
    Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci. 2008;11(8):901–7.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Fornal CA, Stevens J, Barson JR, Blakley GG, Patterson-Buckendahl P, Jacobs BL. Delayed suppression of hippocampal cell proliferation in rats following inescapable shocks. Brain Res. 2007;1130(1):48–53.CrossRefPubMedGoogle Scholar
  86. 86.
    McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1–2):172–89.CrossRefPubMedGoogle Scholar
  87. 87.
    Sahaya K, Mahajan P, Mediratta PK, Ahmed RS, Sharma KK. Reversal of lindane-induced impairment of step-down passive avoidance and oxidative stress by neurosteroids in rats. Toxicology. 2007;239(1–2):116–26.CrossRefPubMedGoogle Scholar
  88. 88.
    Czeh B, Muller-Keuker JI, Rygula R, Abumaria N, Hiemke C, Domenici E, et al. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology. 2007;32(7):1490–503.CrossRefPubMedGoogle Scholar
  89. 89.
    Lucassen PJ, Stumpel MW, Wang Q, Aronica E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology. 2010;58(6):940–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Bjornebekk A, Mathe AA, Brene S. The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol. 2005;8(3):357–68.CrossRefPubMedGoogle Scholar
  91. 91.
    Fujioka A, Fujioka T, Tsuruta R, Izumi T, Kasaoka S, Maekawa T. Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neurosci Lett. 2011;488(1):41–4.CrossRefPubMedGoogle Scholar
  92. 92.
    Tamai S, Sanada K, Fukada Y. Time-of-day-dependent enhancement of adult neurogenesis in the hippocampus. PLoS ONE. 2008;3(12):e3835.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Anacker C. Adult hippocampal neurogenesis in depression: behavioral implications and regulation by the stress system. Curr Top Behav Neurosci. 2014;18:25–43.CrossRefPubMedGoogle Scholar
  94. 94.
    Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, et al, Role for the kinase SKG1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis proc Natl Acad Sci U S A. 2013;110(21):8708–13Google Scholar
  95. 95.
    Montaron MF, Drapeau E, Dupret D, Kitchener P, Aurousseau C, Le Moal M, et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging. 2006;27(4):645–54.CrossRefPubMedGoogle Scholar
  96. 96.
    Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233(1):12–21.CrossRefPubMedGoogle Scholar
  97. 97.
    Yu IT, Lee SH, Lee YS, Son H. Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem Biophys Res Commun. 2004;317(2):484–90.CrossRefPubMedGoogle Scholar
  98. 98.
    Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS, et al. Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res. 2004;1027(1–2):1–10.CrossRefPubMedGoogle Scholar
  99. 99.
    Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology. 2013;38(5):872–83.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Halvorsen M, Waterloo K, Sundet K, Eisemann M, Wang CE. Verbal learning and memory in depression: a 9-year follow-up study. Psychiatry Res. 2011;188(3):350–4.CrossRefPubMedGoogle Scholar
  101. 101.
    Gao LC, Wang YT, Lao X, Wang C, Wang FY, Yuan CG. The change of learning and memory ability in the rat model of depression. Fen Zi Xi Bao Sheng Wu Xue Bao. 2009;42(1):20–6.PubMedGoogle Scholar
  102. 102.
    Yun J, Koike H, Ibi D, Toth E, Mizoguchi H, Nitta A, et al. Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: possible involvement of a brain-specific transcription factor Npas4. J Neurochem. 2010;114(6):1840–51.CrossRefPubMedGoogle Scholar
  103. 103.
    Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A. 2000;97(20):11032–7.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ferragud A, Haro A, Sylvain A, Velazquez-Sanchez C, Hernandez-Rabaza V, Canales JJ. Enhanced habit-based learning and decreased neurogenesis in the adult hippocampus in a murine model of chronic social stress. Behav Brain Res. 2010;210(1):134–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry. 2004;56(8):570–80.CrossRefPubMedGoogle Scholar
  106. 106.
    Nasrallah HA, Hopkins T, Pixley SK. Differential effects of antipsychotic and antidepressant drugs on neurogenic regions in rats. Brain Res. 2010;1354:23–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Islam MR, Moriguchi S, Tagashira H, Fukunaga K. Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice. Neuroscience. 2014;272:116–30.CrossRefPubMedGoogle Scholar
  108. 108.
    Dong H, Gao Z, Rong H, Jin M, Zhang X. beta-Asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules. 2014;19(5):5634–49.CrossRefPubMedGoogle Scholar
  109. 109.
    Hayashi F, Takashima N, Murayama A, Inokuchi K. Decreased postnatal neurogenesis in the hippocampus combined with stress experience during adolescence is accompanied by an enhanced incidence of behavioral pathologies in adult mice. Mol Brain. 2008;1:22.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci. 2007;27(14):3845–54.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Mateus-Pinheiro A, Pinto L, Bessa JM, Morais M, Alves ND, Monteiro S, et al. Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Transl Psychiatry. 2013;3:e210.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Dery N, Pilgrim M, Gibala M, Gillen J, Wojtowicz JM, Macqueen G, et al. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front Neurosci. 2013;7:66.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476(7361):458–61.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805–9.CrossRefPubMedGoogle Scholar
  115. 115.
    Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry. 2008;64(4):293–301.CrossRefPubMedGoogle Scholar
  116. 116.
    David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62(4):479–93.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Becker S, Macqueen G, Wojtowicz JM. Computational modeling and empirical studies of hippocampal neurogenesis-dependent memory: effects of interference, stress and depression. Brain Res. 2009;1299:45–54.CrossRefPubMedGoogle Scholar
  118. 118.
    Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience. 2014;275:314–21.CrossRefPubMedGoogle Scholar
  119. 119.
    Rennie K, De Butte M, Pappas BA. Melatonin promotes neurogenesis in dentate gyrus in the pinealectomized rat. J Pineal Res. 2009;47(4):313–7.CrossRefPubMedGoogle Scholar
  120. 120.
    Ramirez-Rodriguez G, Vega-Rivera NM, Benitez-King G, Castro-Garcia M, Ortiz-Lopez L. Melatonin supplementation delays the decline of adult hippocampal neurogenesis during normal aging of mice. Neurosci Lett. 2012;530(1):53–8.CrossRefPubMedGoogle Scholar
  121. 121.
    Chern CM, Liao JF, Wang YH, Shen YC. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic Biol Med. 2012;52(9):1634–47.CrossRefPubMedGoogle Scholar
  122. 122.
    Ramirez-Rodriguez G, Vega-Rivera NM, Oikawa-Sala J, Gomez-Sanchez A, Ortiz-Lopez L, Estrada-Camarena E. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice. J Pineal Res. 2014;56(4):450–61.CrossRefPubMedGoogle Scholar
  123. 123.
    Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Cuzzocrea S, et al. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res. 2010;49(2):123–9.PubMedGoogle Scholar
  124. 124.
    Dagyte G, Trentani A, Postema F, Luiten PG, Den Boer JA, Gabriel C, et al. The novel antidepressant agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in chronically stressed rats. CNS Neurosci Ther. 2010;16(4):195–207.CrossRefPubMedGoogle Scholar
  125. 125.
    Paizanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, et al. Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol. 2010;13(6):759–74.CrossRefPubMedGoogle Scholar
  126. 126.
    Ekthuwapranee K, Sotthibundhu A, Tocharus C, Govitrapong P. Melatonin ameliorates the inhibitory effects of dexamethasone on adult hippocampal progenitor cells proliferation via upregulation of Erk1/2 phosphorylation. J Steroid Biochem Mol Biol. 2014;145:38–48.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Piyarat Govitrapong
    • 1
    • 2
  • Kasima Ekthuwapranee
    • 1
  • Nootchanart Ruksee
    • 1
    • 3
  • Parichart Boontem
    • 1
  1. 1.Research Center for Neuroscience, Institute of Molecular BiosciencesMahidol UniversitySalayaThailand
  2. 2.Center for Neuroscience and Department of Pharmacology, Faculty of ScienceMahidol UniversitySalayaThailand
  3. 3.National Institute for Child and Family DevelopmentMahidol UniversitySalayaThailand

Personalised recommendations