Melatonin Supplementation in Neurodegenerative Diseases: Current Status

  • Giovanni Polimeni
  • Claudio Guarneri
  • Salvatore Cuzzocrea


Neurodegenerative diseases are chronic and progressive disorders characterized by selective destruction of neurons in motor, sensory, and cognitive systems. Despite their different origins, the majority of central and peripheral nervous system degenerative diseases (including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis) share the reduced capacity to maintain the balance between free radical formation and antioxidative mechanisms as a common critical factor [1].


Amyotrophic Lateral Sclerosis Huntington Disease Multiple System Atrophy Pineal Gland Amyotrophic Lateral Sclerosis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Reiter RJ, Tan DX, Manchester LC, Tamura H. Melatonin defeats neurally-derived free radicals and reduces the associated neuromorphological and neurobehavioral damage. J Physiol Pharmacol. 2007;58:5–22.PubMedGoogle Scholar
  2. 2.
    Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabo C. Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res. 1997;23:106–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Cuzzocrea S, Zingarelli B, Costantino G, Caputi AP. Protective effect of melatonin in a non-septic shock model induced by zymosan in the rat. J Pineal Res. 1998;25:24–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Cuzzocrea S, Costantino G, Mazzon E, Micali A, De Sarro A, Caputi AP. Beneficial effects of melatonin in a rat model of splanchnic artery occlusion and reperfusion. J Pineal Res. 2000;28:52–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Cuzzocrea S, Mazzon E, Serraino I, Lepore V, Terranova ML, Ciccolo A, Caputi AP. Melatonin reduces dinitrobenzene sulfonic acid-induced colitis. J Pineal Res. 2001;30:1–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Dugo L, Serraino I, Fulia F, De Sarro A, Caputi AP, Cuzzocrea S. Effect of melatonin on cellular energy depletion mediated by peroxynitrite and poly (ADP-ribose) synthetase activation in an acute model of inflammation. J Pineal Res. 2001;31:76–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Cuzzocrea S, Reiter RJ. Pharmacological actions of melatonin in acute and chronic inflammation. Curr Top Med Chem. 2002;2:153–65.CrossRefPubMedGoogle Scholar
  8. 8.
    MohanKumar SM, Campbell A, Block M, Veronesi B. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology. 2008;29:479–88.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin AM, Ho LT. Melatonin suppresses iron-induced neurodegeneration in rat brain. Free Radic Biol Med. 2000;28:904–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58:39–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G. Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull. 2001;55:125–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJ. Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem. 2003;86:228–37.CrossRefPubMedGoogle Scholar
  13. 13.
    Eddleston M, Mucke L. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience. 1993;54:15–36.CrossRefPubMedGoogle Scholar
  14. 14.
    Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002;202:13–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Yun HY, Dawson VL, Dawson TM. Nitric oxide in health and disease of the nervous system. Mol Psychiatry. 1997;2:300–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Antolin I, Mayo JC, Sainz RM, del Brio Mde L, Herrera F, Martin V, Rodriguez C. Protective effect of melatonin in a chronic experimental model of Parkinson’s disease. Brain Res. 2002;943:163–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Shen YX, Xu SY, Wei W, Wang XL, Wang H, Sun X. Melatonin blocks rat hippocampal neuronal apoptosis induced by amyloid beta-peptide 25–35. J Pineal Res. 2002;32:163–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Reiter RJ, Tan DX, Gitto E, Sainz RM, Mayo JC, Leon J, Manchester LC, Vijayalaxmi, Kilic E, Kilic U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol J Pharmacol. 2004;56:159–70.PubMedGoogle Scholar
  20. 20.
    Tricoire H, Locatelli A, Chemineau P, Malpaux B. Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology. 2002;143:84–90.CrossRefPubMedGoogle Scholar
  21. 21.
    Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 2004;18:869–71.PubMedGoogle Scholar
  22. 22.
    Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav. 2013;63:322–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res. 2004;36:171–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Leon J, Acuna-Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38:1–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Esposito E, Iacono A, Muia C, Crisafulli C, Mattace Raso G, Bramanti P, Meli R, Cuzzocrea S. Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. J Pineal Res. 2008;44:78–87.PubMedGoogle Scholar
  26. 26.
    Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009;15:345–57.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Medeiros CA, Carvalhedo de Bruin PF, Lopes LA, Magalhaes MC, de Lourdes Seabra M, de Bruin VM. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J Neurol. 2007;254:459–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Sharma R, McMillan CR, Tenn CC, Niles LP. Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res. 2006;1068:230–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J, Zhang Q, Wang Q, Tian Q. Melatonin ameliorates alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol. 2011;25:1118–25.CrossRefPubMedGoogle Scholar
  30. 30.
    Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B, Mertens N, Sperling S, Bohn M, Huther G, Schneider A, Bach A, Siren AL, Hardeland R, Bahr M, Nave KA, Ehrenreich H. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res. 2006;41:313–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Jacob S, Poeggeler B, Weishaupt JH, Siren AL, Hardeland R, Bahr M, Ehrenreich H. Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res. 2002;33:186–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Daglioglu E, Serdar Dike M, Kilinc K, Erdogan D, Take G, Ergungor F, Okay O, Biyikli Z. Neuroprotective effect of melatonin on experimental peripheral nerve injury: an electron microscopic and biochemical study. Cen Eur Neurosurg. 2009;70:109–14.CrossRefGoogle Scholar
  34. 34.
    Genovese T, Mazzon E, Muia C, Bramanti P, De Sarro A, Cuzzocrea S. Attenuation in the evolution of experimental spinal cord trauma by treatment with melatonin. J Pineal Res. 2005;38:198–208.CrossRefPubMedGoogle Scholar
  35. 35.
    Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol. 2009;44:175–200.CrossRefPubMedGoogle Scholar
  36. 36.
    Jan JE, Hamilton D, Seward N, Fast DK, Freeman RD, Laudon M. Clinical trials of controlled-release melatonin in children with sleep-wake cycle disorders. J Pineal Res. 2000;29:34–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Seabra ML, Bignotto M, Pinto Jr LR, Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res. 2000;29:193–200.CrossRefPubMedGoogle Scholar
  38. 38.
    Kelley BJ, Petersen RC. Alzheimer’s disease and mild cognitive impairment. Neurol Clin. 2007;25:577–609.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6:487–98.CrossRefPubMedGoogle Scholar
  40. 40.
    Pappolla MA, Omar RA, Kim KS, Robakis NK. Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol. 1992;140:621–8.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Balazs L, Leon M. Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res. 1994;19:1131–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Pamplona R, Dalfo E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otin M. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem. 2005;280:21522–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu Q, Smith MA, Avila J, DeBernardis J, Kansal M, Takeda A, Zhu X, Nunomura A, Honda K, Moreira PI, Oliveira CR, Santos MS, Shimohama S, Aliev G, de la Torre J, Ghanbari HA, Siedlak SL, Harris PL, Sayre LM, Perry G. Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic Biol Med. 2005;38:746–54.CrossRefPubMedGoogle Scholar
  44. 44.
    Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, Esler WP, Maggio JE, Mantyh PW. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci. 1998;18:2161–73.PubMedGoogle Scholar
  45. 45.
    Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Saragoni L, Hernandez P, Maccioni RB. Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells. Neurochem Res. 2000;25:59–70.CrossRefPubMedGoogle Scholar
  47. 47.
    Brion JP, Anderton BH, Authelet M, Dayanandan R, Leroy K, Lovestone S, Octave JN, Pradier L, Touchet N, Tremp G. Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp. 2001;67:81–8.CrossRefGoogle Scholar
  48. 48.
    Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, Bradshaw PC. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J Alzheimers Dis. 2010;20:S535–50.PubMedGoogle Scholar
  49. 49.
    Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis. 2010;20:S265–79.PubMedGoogle Scholar
  50. 50.
    Ozcankaya R, Delibas N. Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: cross-sectional study. Croat Med J. 2002;43:28–32.PubMedGoogle Scholar
  51. 51.
    Magri F, Locatelli M, Balza G, Molla G, Cuzzoni G, Fioravanti M, Solerte SB, Ferrari E. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol Int. 1997;14:385–96.CrossRefPubMedGoogle Scholar
  52. 52.
    Wu YH, Feenstra MG, Zhou JN, Liu RY, Torano JS, Van Kan HJ, Fischer DF, Ravid R, Swaab DF. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab. 2003;88:5898–906.CrossRefPubMedGoogle Scholar
  53. 53.
    Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M, Solerte SB, Magri F. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol. 2000;35:1239–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35:125–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin-a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93:3–84.Google Scholar
  56. 56.
    Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DL, Reiter RJ, Efthimiopoulos S, Robakis NK. Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci. 1997;17:1683–90.PubMedGoogle Scholar
  57. 57.
    Li XC, Wang ZF, Zhang JX, Wang Q, Wang JZ. Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol. 2005;510:25–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Cheng Y, Feng Z, Zhang QZ, Zhang JT. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin. 2006;27:129–39.CrossRefPubMedGoogle Scholar
  59. 59.
    Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res. 2005;7:293–318.CrossRefPubMedGoogle Scholar
  60. 60.
    Pappolla MA, Simovich MJ, Bryant-Thomas T, Chyan YJ, Poeggeler B, Dubocovich M, Bick R, Perry G, Cruz-Sanchez F, Smith MA. The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated by melatonin membrane receptors. J Pineal Res. 2002;32:135–42.CrossRefPubMedGoogle Scholar
  61. 61.
    Jesudason EP, Baben B, Ashok BS, Masilamoni JG, Kirubagaran R, Jebaraj WC, Jayakumar R. Anti-inflammatory effect of melatonin on A beta vaccination in mice. Mol Cell Biochem. 2007;298:69–81.CrossRefPubMedGoogle Scholar
  62. 62.
    Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J, Reiter RJ. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm. 2000;107:203–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M, Frangione B, Ghiso J. Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem. 1998;273:7185–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Quinn J, Kulhanek D, Nowlin J, Jones R, Pratico D, Rokach J, Stackman R. Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res. 2005;1037:209–13.CrossRefPubMedGoogle Scholar
  65. 65.
    Feng Z, Qin C, Chang Y, Zhang JT. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic Biol Med. 2006;40:101–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1-42. J Pineal Res. 2008;45:157–65.CrossRefPubMedGoogle Scholar
  67. 67.
    Poeggeler B, Miravalle L, Zagorski MG, Wisniewski T, Chyan YJ, Zhang Y, Shao H, Bryant-Thomas T, Vidal R, Frangione B, Ghiso J, Pappolla MA. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry. 2001;40:14995–5001.CrossRefPubMedGoogle Scholar
  68. 68.
    Deng YQ, Xu GG, Duan P, Zhang Q, Wang JZ. Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol Sin. 2005;26:519–26.CrossRefPubMedGoogle Scholar
  69. 69.
    Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, Zhang JT. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res. 2004;37:129–36.CrossRefPubMedGoogle Scholar
  70. 70.
    Feng Z, Zhang JT. Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med. 2004;37:1790–801.CrossRefPubMedGoogle Scholar
  71. 71.
    Feng Z, Cheng Y, Zhang JT. Long-term effects of melatonin or 17 beta-estradiol on improving spatial memory performance in cognitively impaired, ovariectomized adult rats. J Pineal Res. 2004;37:198–206.CrossRefPubMedGoogle Scholar
  72. 72.
    Veneroso C, Tunon MJ, Gonzalez-Gallego J, Collado PS. Melatonin reduces cardiac inflammatory injury induced by acute exercise. J Pineal Res. 2009;47:184–91.CrossRefPubMedGoogle Scholar
  73. 73.
    Song W, Lahiri DK. Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J Mol Neurosci. 1997;9:75–92.CrossRefPubMedGoogle Scholar
  74. 74.
    Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Grundke-Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA, Chain DG, Neria E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem. 2003;85:1101–8.CrossRefPubMedGoogle Scholar
  75. 75.
    García-Mesa Y, Giménez-Llort L, López LC, Venegas C, Cristòfol R, Escames G, Acuña-Castroviejo D, Sanfeliu C. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging. 2012;33:1124.e13–29.CrossRefGoogle Scholar
  76. 76.
    Kostrzewa RM, Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox Res. 2003;5:375–83.CrossRefPubMedGoogle Scholar
  77. 77.
    Olivieri G, Otten U, Meier F, Baysang G, Dimitriades-Schmutz B, Muller-Spahn F, Savaskan E. Beta-amyloid modulates tyrosine kinase B receptor expression in SHSY5Y neuroblastoma cells: influence of the antioxidant melatonin. Neuroscience. 2003;120:659–65.CrossRefPubMedGoogle Scholar
  78. 78.
    Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM, Acuna-Castroviejo D. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J. 1999;13:1537–46.PubMedGoogle Scholar
  79. 79.
    Escames G, Leon J, Macias M, Khaldy H, Acuna-Castroviejo D. Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J. 2003;17:932–4.PubMedGoogle Scholar
  80. 80.
    Garcia JJ, Reiter RJ, Pie J, Ortiz GG, Cabrera J, Sainz RM, Acuna-Castroviejo D. Role of pinoline and melatonin in stabilizing hepatic microsomal membranes against oxidative stress. J Bioenerg Biomembr. 1999;31:609–16.CrossRefPubMedGoogle Scholar
  81. 81.
    Brusco LI, Marquez M, Cardinali DP. Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res. 1998;25:260–3.CrossRefPubMedGoogle Scholar
  82. 82.
    Brunner P, Sozer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Muller-Spahn F, Savaskan E. Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem. 2006;50:311–6.PubMedGoogle Scholar
  83. 83.
    Cardinali DP, Brusco LI, Liberczuk C, Furio AM. The use of melatonin in Alzheimer’s disease. Neuro Endocrinol Lett. 2002;23:20–3.PubMedGoogle Scholar
  84. 84.
    Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch. 2003;70:334–41.CrossRefPubMedGoogle Scholar
  85. 85.
    Jean-Louis G, Zizi F, von Gizycki H, Taub H. Effects of melatonin in two individuals with Alzheimer’s disease. Percept Mot Skills. 1998;87:331–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Linert W, Jameson GN. Redox reactions of neurotransmitters possibly involved in the progression of Parkinson’s disease. J Inorg Biochem. 2000;79:319–26.CrossRefPubMedGoogle Scholar
  87. 87.
    Calne DB. The nature of Parkinson’s disease. Neurochem Int. 1992;20:1S–3.CrossRefPubMedGoogle Scholar
  88. 88.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Di Monte D, Lawler CP. Mechanisms of parkinsonism: session X summary and research needs. Neurotoxicology. 2001;22:853–4.CrossRefPubMedGoogle Scholar
  91. 91.
    Collins MA, Neafsey EJ. Potential neurotoxic “agents provocateurs” in Parkinson’s disease. Neurotoxicol Teratol. 2002;24:571–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32:804–12.CrossRefPubMedGoogle Scholar
  93. 93.
    Olanow CW. Oxidation reactions in Parkinson’s disease. Neurology. 1990;40:32–7; discussion 37–9.Google Scholar
  94. 94.
    Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 1997;69:1196–203.CrossRefPubMedGoogle Scholar
  95. 95.
    Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem. 1989;52:381–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Perry TL, Yong VW. Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett. 1986;67:269–74.CrossRefPubMedGoogle Scholar
  97. 97.
    Lotharius J, O’Malley KL. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem. 2000;275:38581–8.CrossRefPubMedGoogle Scholar
  98. 98.
    Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–80.CrossRefPubMedGoogle Scholar
  99. 99.
    Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985;36:2503–8.CrossRefPubMedGoogle Scholar
  100. 100.
    Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis. 2000;7:240–50.CrossRefPubMedGoogle Scholar
  101. 101.
    Adams Jr JD, Chang ML, Klaidman L. Parkinson’s disease – redox mechanisms. Curr Med Chem. 2001;8:809–14.CrossRefPubMedGoogle Scholar
  102. 102.
    Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, Willer JC, Maziere M. Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience. 1993;53:169–78.CrossRefPubMedGoogle Scholar
  103. 103.
    Chen LJ, Gao YQ, Li XJ, Shen DH, Sun FY. Melatonin protects against MPTP/MPP+ -induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res. 2005;39:34–42.CrossRefPubMedGoogle Scholar
  104. 104.
    Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I. The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord. 2004;3:515–33.CrossRefPubMedGoogle Scholar
  105. 105.
    Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, Giusti P. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J. 2001;15:164–70.CrossRefPubMedGoogle Scholar
  106. 106.
    Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM, Rodriguez. Inhibition of cell proliferation: a mechanism likely to mediate the prevention of neuronal cell death by melatonin. J Pineal Res. 1998;25:12–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Bolitho SJ, Naismith SL, Rajaratnam SM, Grunstein RR, Hodges JR, Terpening Z, Rogers N, Lewis SJ. Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Med. 2014;15:342–7.CrossRefPubMedGoogle Scholar
  108. 108.
    Kim JS, Bailey MJ, Weller JL, Sugden D, Rath MF, Moller M, et al. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol Cell Endocrinol. 2010;314:128–35.CrossRefPubMedGoogle Scholar
  109. 109.
    Gonzalez S, Moreno-Delgado D, Moreno E, Perez-Capote K, Franco R, Mallol J, et al. Circadian-related heterodimerization of adrenergic and dopamine D4 receptors modulates melatonin synthesis and release in the pineal gland. Plos Biol. 2012;10:e1001347.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Dowling GA, Mastick J, Colling E, Carter JH, Singer CM, Aminoff MJ. Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med. 2005;6:459–66.CrossRefPubMedGoogle Scholar
  111. 111.
    Shamir E, Barak Y, Shalman I, Laudon M, Zisapel N, Tarrasch R, Elizur A, Weizman R. Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Arch Gen Psychiatry. 2001;58:1049–52.CrossRefPubMedGoogle Scholar
  112. 112.
    Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW, Hardeland R, Pandi-Perumal SR. Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord. 2011;4:297–317.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Hughes RJ, Sack RL, Lewy AJ. The role of melatonin and circadian phase in age-related sleep-maintenance insomnia: assessment in a clinical trial of melatonin replacement. Sleep. 1998;21:52–68.PubMedGoogle Scholar
  114. 114.
    Mishima K, Okawa M, Shimizu T, Hishikawa Y. Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab. 2001;86:129–34.PubMedGoogle Scholar
  115. 115.
    Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.CrossRefPubMedGoogle Scholar
  116. 116.
    Walker FO. Huntington’s disease. Lancet. 2007;369:218–28.CrossRefPubMedGoogle Scholar
  117. 117.
    Tobin AJ, Signer ER. Huntington’s disease: the challenge for cell biologists. Trends Cell Biol. 2000;10:531–6.CrossRefPubMedGoogle Scholar
  118. 118.
    Arnulf I, Nielsen J, Lohmann E, Schiefer J, Wild E, Jennum P, Konofal E, Walker M, Oudiette D, Tabrizi S, Durr A. Rapid eye movement sleep disturbances in Huntington disease. Arch Neurol. 2008;65:482–8.CrossRefPubMedGoogle Scholar
  119. 119.
    Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Moller T, Tabrizi SJ. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205:1869–77.Google Scholar
  120. 120.
    van der Burg JM, Bjorkqvist M, Brundin P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol. 2009;8:765–74.CrossRefPubMedGoogle Scholar
  121. 121.
    Vonsattel JP. Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115:55–69.CrossRefPubMedGoogle Scholar
  122. 122.
    Di Figlia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG, Manoharan M, Sah DW, Zamore PD, Aronin N. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A. 2007;104:17204–9.CrossRefGoogle Scholar
  123. 123.
    Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–700.CrossRefPubMedGoogle Scholar
  124. 124.
    Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol. 1998;56:359–84.CrossRefPubMedGoogle Scholar
  125. 125.
    Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol. 2007;64:517–26.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Giovanni Polimeni
    • 1
  • Claudio Guarneri
    • 2
  • Salvatore Cuzzocrea
    • 3
  1. 1.Sicilian Regional Centre of Pharmacovigilance, C/O Unit of PharmacologyA.O.U. Policlinico “G. Martino”, Torre BiologicaMessinaItaly
  2. 2.Department of Clinical Experimental Medicine, Section of DermatologyThe University of Messina C/O A.O.U. Policlinico “G. Martino”MessinaItaly
  3. 3.Department of Biological and Environmental SciencesThe University of MessinaMessinaItaly

Personalised recommendations