Acetylcholinergic Nicotinic Receptors as Pharmacological Targets for Cognitive Enhancement: Emerging Evidence from Psychosis Populations

  • Derek K. Tracy
  • Valentina Casetti
  • Arann R. Rowe
  • Louise Mercer
  • Sukhwinder S. Shergill


Cognitive deficits have been recognised since the first conceptualisation of psychosis; indeed it was initially labelled ‘dementia praecox’, or presenile dementia, in recognition of the primacy of these problems. However, these were largely ignored – in part due to a lack of effective interventions – in the sixty or so years since the discovery of dopaminergic antagonist antipsychotic medications. In recent times there has been a renewed growth of interest in putative cognitive enhancers in this condition, with much work looking at agents that modulate the acetylcholinergic (ACh) system that is intimately linked with cognition and memory. Unlike memory sparing medications in dementia, which prevent the enzymatic degradation of synaptic ACh, in psychosis the emphasis has been on direct agonists. To date, several compounds have been tested in humans, and interesting early results support a pro-cognitive effect in some, but not all. A challenge, however, is understanding why only some appear to derive benefit, and whether any such factors can be used for predictive prescribing, so that more efficacious future agents can be developed.


Ventral Tegmental Area Sensory Gating Snake Venom Toxin Medial Septal Nucleus Auditory Gating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Brief psychiatric rating scale


Cambridge neuropsychological test automated battery


Continuous performance test


Continuous performance test – identical pairs version


Digital symbol substitution test


Global assessment of functioning


Hit reaction time variability


Korean Mini-Mental State Examination


Level of functioning


Long-term depression


Long-term potentiation


Mitogen-activated protein kinase


Measurement and treatment research to improve cognition in schizophrenia


MATRICS consensus cognitive battery


Nicotinic acetylcholine receptor




Positive and negative syndrome scale




Repeatable battery for the assessment of neuropsychological status


Randomised controlled trial


Scale for the assessment of negative symptoms


  1. 1.
    Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci. 1999;22:425–44; discussion 444–89.PubMedGoogle Scholar
  2. 2.
    Ahnallen CG, Nestor PG, Shenton ME, Mccarley RW, Niznikiewicz MA. Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophr Res. 2008;100:261–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 2009;89:121–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aliane V, Perez S, Bohren Y, Deniau JM, Kemel ML. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies. Brain. 2011;134:110–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Alkondon M, Pereira EF, Almeida LE, Randall WR, Albuquerque EX. Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology. 2000;39:2726–39.CrossRefPubMedGoogle Scholar
  7. 7.
    Allott K, Liu P, Proffitt T-M, Killackey E. Cognition at illness onset as a predictor of later functional outcome in early psychosis: systematic review and methodological critique. Schizophr Res. 2011;125:221–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Arias HR. Positive and negative modulation of nicotinic receptors. Adv Protein Chem Struct Biol. 2010;80:153–203.CrossRefPubMedGoogle Scholar
  9. 9.
    Barr AM, Procyshyn RM, Hui P, Johnson JL, Honer WG. Self-reported motivation to smoke in schizophrenia is related to antipsychotic drug treatment. Schizophr Res. 2008;100:252–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Benarroch EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology. 2013;80:1148–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Bentley P, Husain M, Dolan RJ. Effects of cholinergic enhancement on visual stimulation, spatial attention, and spatial working memory. Neuron. 2004;41:969–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74:1155–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Bowie CR, Reichenberg A, Patterson TL, Heaton RK, Harvey PD. Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms. American. Journal of Psychiatry 2006;163:418–25. doi: 10.1176/appi.ajp.163.3.418.
  14. 14.
    Bramon E, Rabe-Hesketh S, Sham P, et al. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research 2004;70:315–29.Google Scholar
  15. 15.
    Brandt AM. The rise, fall, and deadly persistence of the product that defined America. New York: Basic Books; 2007.Google Scholar
  16. 16.
    Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, Marks MJ, Collins AC, Leonard S. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology. 2000;23:351–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Bromet EJ, Naz B, Fochtmann LJ, Carlson GA, Tanenberg-Karant M. Long-term diagnostic stability and outcome in recent first-episode cohort studies of schizophrenia. Schizophr Bull. 2005;31:639–49.CrossRefPubMedGoogle Scholar
  18. 18.
    Brudzynski SM. The ascending mesolimbic cholinergic system-a specific division of the reticular activating system involved in the initiation of negative emotional States. J Mol Neurosci. 2014;53:436–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Buccafusco JJ, Letchworth SR, Bencherif M, Lippiello PM. Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic–pharmacodynamic discordance. Trends Pharmacol Sci. 2005;26:352–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, Mcmahon RP. Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry. 2008;165:82–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull. 2007;33:1120–30.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Campbell NR, Fernandes CC, Halff AW, Berg DK. Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci. 2010;30:8734–44.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Carrion RE, Goldberg TE, McLaughlin D, Auther AM, Correll CU, Cornblatt BA. Impact of neurocognition on social and role functioning in individuals at clinical high risk for psychosis. Am J Psychiatry. 2011;168:806–13.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Castner SA, Smagin GN, Piser TM, Wang Y, Smith JS, Christian EP, Mrzljak L, Williams GV. Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol Psychiatry. 2011;69:12–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Changeux JP, Devillers-Thiery A, Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984;225:1335–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Changeux JP, Edelstein SJ. Allosteric mechanisms of signal transduction. Science. 2005;308:1424–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen XS, Li CB, Smith RC, Xiao ZP, Wang JJ. Differential sensory gating functions between smokers and non-smokers among drug-naive first episode schizophrenic patients. Psychiatry Res. 2011;188:327–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol. 2013;86:1063–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Court J, Spurden D, Lloyd S, Mckeith I, Ballard C, Cairns N, Kerwin R, Perry R, Perry E. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J Neurochem. 1999;73:1590–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990;5:847–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW. Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex. 2004;14:922–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.CrossRefPubMedGoogle Scholar
  33. 33.
    Davidson M, Galderisi S, Weiser M, Werbeloff N, Fleischhacker WW, Keefe RS, Boter H, Keet IP, Prelipceanu D, Rybakowski JK, Libiger J, Hummer M, Dollfus S, Lopez-Ibor JJ, Hranov LG, Gaebel W, Peuskens J, Lindefors N, Riecher-Rossler A, Kahn RS. Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). Am J Psychiatry. 2009;166:675–82.CrossRefPubMedGoogle Scholar
  34. 34.
    DE Leon J, Diaz FJ. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res. 2005;76:135–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res. 2011;221:389–411.CrossRefPubMedGoogle Scholar
  36. 36.
    Demeter E, Sarter M. Leveraging the cortical cholinergic system to enhance attention. Neuropharmacology. 2013;64:294–304.CrossRefPubMedGoogle Scholar
  37. 37.
    Deutsch SI, Schwartz BL, Schooler NR, Brown CH, Rosse RB, Rosse SM. Targeting alpha-7 nicotinic neurotransmission in schizophrenia: a novel agonist strategy. Schizophr Res. 2013;148:138–44.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Deutsch SI, Urbano MR, Neumann SA, Burket JA, Katz E. Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions? Clin Neuropharmacol. 2010;33:114–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Dickinson JA, Hanrott KE, Mok MH, Kew JN, Wonnacott S. Differential coupling of alpha7 and non-alpha7 nicotinic acetylcholine receptors to calcium-induced calcium release and voltage-operated calcium channels in PC12 cells. J Neurochem. 2007;100:1089–96.CrossRefPubMedGoogle Scholar
  40. 40.
    Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res. 2011;221:505–14.CrossRefPubMedGoogle Scholar
  41. 41.
    Dyer MA, Freudenreich O, Culhane MA, Pachas GN, Deckersbach T, Murphy E, Goff DC, Evins AE. High-dose galantamine augmentation inferior to placebo on attention, inhibitory control and working memory performance in nonsmokers with schizophrenia. Schizophr Res. 2008;102:88–95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsaki G, Deisseroth K, Tepper JM, Koos T. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci. 2012;15:123–30.CrossRefGoogle Scholar
  43. 43.
    Fayuk D, Yakel JL. Ca2+ permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. J Physiol. 2005;566:759–68.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Fioravanti M, Bianchi V, Cinti ME. Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence. BMC Psychiatry. 2012;12:64.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fransen E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron. 2006;49:735–46.CrossRefPubMedGoogle Scholar
  46. 46.
    Frazier JA, Giuliano AJ, Johnson JL, Yakutis L, Youngstrom EA, Breiger D, Sikich L, Findling RL, McClellan J, Hamer RM, Vitiello B, Lieberman JA, Hooper SR. Neurocognitive outcomes in the treatment of early-onset schizophrenia spectrum disorders study. J Am Acad Child Adolesc Psychiatry. 2012;51:496–505.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Freedman R, Adams CE, Leonard S. The α7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000;20:299–306.CrossRefPubMedGoogle Scholar
  48. 48.
    Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A. 1997;94:587–92.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry. 2008;165:1040–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fuchs S, Perl O, Ilani T, Strous RD. The a7 nicotinic receptor as a potential peripheral marker for schizophrenia. Eur Neuropsychopharmacol. 2004;14:S141.CrossRefGoogle Scholar
  51. 51.
    Gentry CL, Lukas RJ. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 2002;1:359–85.CrossRefPubMedGoogle Scholar
  52. 52.
    George TP, Ziedonis DM. Addressing tobacco dependence in psychiatric practice: promises and pitfalls. Can J Psychiatry. 2009;54:353–5.PubMedGoogle Scholar
  53. 53.
    Ghoneim MM, Mewaldt SP. Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia. 1975;44:257–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Gilbert DG, Gilbert BO. Personality, psychopathology, and nicotine response as mediators of the genetics of smoking. Behav Genet. 1995;25:133–47.CrossRefPubMedGoogle Scholar
  55. 55.
    Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol. 1999;411:693–704.CrossRefPubMedGoogle Scholar
  56. 56.
    Giovannini MG. The role of the extracellular signal-regulated kinase pathway in memory encoding. Rev Neurosci. 2006;17:619–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Goldberg TE, Weinberger DR. Genes and the parsing of cognitive processes. Trends Cogn Sci. 2004;8:325–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74:363–96.CrossRefPubMedGoogle Scholar
  59. 59.
    Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, Jahanshahi M. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37:2676–88.CrossRefPubMedGoogle Scholar
  60. 60.
    Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res. 2004;72:41–51.CrossRefPubMedGoogle Scholar
  61. 61.
    Gregory KJ, Dong EN, Meiler J, Conn PJ. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology. 2011;60:66–81.CrossRefPubMedGoogle Scholar
  62. 62.
    Grinevich VP, Papke RL, Lippiello PM, Bencherif M. Atypical antipsychotics as noncompetitive inhibitors of alpha4beta2 and alpha7 neuronal nicotinic receptors. Neuropharmacology. 2009;57:183–91.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol. 2014;261:1939.CrossRefPubMedGoogle Scholar
  64. 64.
    Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011;71:155–65.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Guillozet-Bongaarts AL, Hyde TM, Dalley RA, Hawrylycz MJ, Henry A, Hof PR, Hohmann J, Jones AR, Kuan CL, Royall J, Shen E, Swanson B, Zeng H, Kleinman JE. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2014;19:478–85.CrossRefPubMedGoogle Scholar
  66. 66.
    Hall MH, Taylor G, Salisbury DF, Levy DL. Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophr Bull. 2011;37:1187–99.CrossRefPubMedGoogle Scholar
  67. 67.
    Harati H, Barbelivien A, Cosquer B, Majchrzak M, Cassel JC. Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task. Neuroscience. 2008;153:72–83.CrossRefPubMedGoogle Scholar
  68. 68.
    Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R. Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology. 2004;29:1378–85.CrossRefPubMedGoogle Scholar
  69. 69.
    Harrison G, Hopper K, Craig T, Laska E, Siegel C, Wanderling J, Dube KC, Ganev K, Giel R, An Der Heiden W, Holmberg SK, Janca A, Lee PW, Leon CA, Malhotra S, Marsella AJ, Nakane Y, Sartorius N, Shen Y, Skoda C, Thara R, Tsirkin SJ, Varma VK, Walsh D, Wiersma D. Recovery from psychotic illness: a 15- and 25-year international follow-up study. Br J Psychiatry. 2001;178:506–17.CrossRefPubMedGoogle Scholar
  70. 70.
    Harvey PD, Howanitz E, Parrella M, White L, Davidson M, Mohs RC, Hoblyn J, Davis KL. Symptoms, cognitive functioning, and adaptive skills in geriatric patients with lifelong schizophrenia: a comparison across treatment sites. Am J Psychiatry. 1998;155:1080–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Harvey PD, Rabinowitz J, Eerdekens M, Davidson M. Treatment of cognitive impairment in early psychosis: a comparison of risperidone and haloperidol in a large long-term trial. Am J Psychiatry. 2005;162:1888–95.CrossRefPubMedGoogle Scholar
  72. 72.
    Hashimoto K, Iyo M, Freedman R, Stevens KE. Tropisetron improves deficient inhibitory auditory processing in DBA/2 mice: role of alpha 7 nicotinic acetylcholine receptors. Psychopharmacology (Berl). 2005;183:13–9.CrossRefGoogle Scholar
  73. 73.
    Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36:52–73.CrossRefPubMedGoogle Scholar
  74. 74.
    Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12:426–45.CrossRefPubMedGoogle Scholar
  75. 75.
    Heishman SJ, Kleykamp BA, Singleton EG. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology (Berl). 2010;210:453–69.CrossRefGoogle Scholar
  76. 76.
    Hong LE, Schroeder M, Ross TJ, Buchholz B, Salmeron BJ, Wonodi I, Thaker GK, Stein EA. Nicotine enhances but does not normalize visual sustained attention and the associated brain network in schizophrenia. Schizophr Bull. 2011;37:416–25.CrossRefPubMedGoogle Scholar
  77. 77.
    Hsieh CY, Cruikshank SJ, Metherate R. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Res. 2000;880:51–64.CrossRefPubMedGoogle Scholar
  78. 78.
    Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137:22–54.CrossRefPubMedGoogle Scholar
  79. 79.
    Jaaskelainen E, Juola P, Hirvonen N, Mcgrath JJ, Saha S, Isohanni M, Veijola J, Miettunen J. A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull. 2013;39:1296–306.CrossRefPubMedGoogle Scholar
  80. 80.
    Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem. 2005;48:4705–45.CrossRefPubMedGoogle Scholar
  81. 81.
    Jeong Da U, Lee JE, Lee SE, Chang WS, Kim SJ, Chang JW. Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. Biomed Res Int. 2014;2014:568587.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Jones CK, Byun N, Bubser M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology. 2012;37:16–42.CrossRefPubMedGoogle Scholar
  83. 83.
    Tracy DK, Sendt K-V, Shergill S. Antipsychotic polypharmacy: still dirty, but hardly a secret. A systematic review and clinical guide. Curr Psychopharmacol. 2013;2:143–71.CrossRefGoogle Scholar
  84. 84.
    Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry. 2013;70:1107–12.CrossRefPubMedGoogle Scholar
  85. 85.
    Kandel ER. Calcium and the control of synaptic strength by learning. Nature. 1981;293:697–700.CrossRefPubMedGoogle Scholar
  86. 86.
    Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE trial. Arch Gen Psychiatry. 2007;64:633–47.CrossRefPubMedGoogle Scholar
  87. 87.
    Keefe RS, Sweeney JA, Gu H, Hamer RM, Perkins DO, McEvoy JP, Lieberman JA. Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am J Psychiatry. 2007;164:1061–71.CrossRefPubMedGoogle Scholar
  88. 88.
    Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci. 2014;8:109.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Kitchen H, Rofail D, Heron L, Sacco P. Cognitive impairment associated with schizophrenia: a review of the humanistic burden. Adv Ther. 2012;29:148–62.CrossRefPubMedGoogle Scholar
  90. 90.
    Kleykamp BA, Jennings JM, Eissenberg T. Effects of transdermal nicotine and concurrent smoking on cognitive performance in tobacco-abstinent smokers. Exp Clin Psychopharmacol. 2011;19:75–84.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kraepelin E. Psychiatrie: Ein Lehrbuch fur Studirende und Aerzte. Funfte, vollstandig umgearbeitete Auflage. Leipzig: Verlag von J. A. Barth; 1896.Google Scholar
  92. 92.
    Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, Mai JK, Zilles K, Bauer A, Matusch A, Schulz RJ, Noreik M, Buhrle CP, Maintz D, Woopen C, Haussermann P, Hellmich M, Klosterkotter J, Wiltfang J, Maarouf M, Freund HJ, Sturm V. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20(3):353–60.CrossRefPubMedGoogle Scholar
  93. 93.
    Langley JN. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol. 1905;33:374–413.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Laplante F, Zhang ZW, Huppe-Gourgues F, Dufresne MM, Vaucher E, Sullivan RM. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats. Neuropharmacology. 2012;63:1075–84.CrossRefPubMedGoogle Scholar
  95. 95.
    Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284:2606–10.CrossRefPubMedGoogle Scholar
  96. 96.
    LE Novere N, Changeux JP. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 1995;40:155–72.CrossRefPubMedGoogle Scholar
  97. 97.
    Lee CT, Fuemmeler BF, Mcclernon FJ, Ashley-Koch A, Kollins SH. Nicotinic receptor gene variants interact with attention deficient hyperactive disorder symptoms to predict smoking trajectories from early adolescence to adulthood. Addict Behav. 2013;38:2683–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J Neurotrauma. 2013;30:131–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Lee S-W, Lee J-G, Lee B-J et al. A 12-week, double-blind, placebo controlled trial of galantamine adjunctive treatment to conventional antipsychotics for the cognitive impairments in chronic schizophrenia. International Clinical Psychopharmacology. 2007;22:63–68.Google Scholar
  100. 100.
    Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther. 2009;122:302–11.CrossRefPubMedGoogle Scholar
  101. 101.
    Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P, Zerbe G, Olincy A, Ross RG, Adler LE, Freedman R. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry. 2002;59:1085–96.CrossRefPubMedGoogle Scholar
  102. 102.
    Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lassig B, Salanti G, Davis JM. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382:951–62.CrossRefPubMedGoogle Scholar
  103. 103.
    Levin ED, Mcclernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl). 2006;184:523–39.CrossRefGoogle Scholar
  104. 104.
    Levin ED, Wilson W, Rose JE, McEvoy J. Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology. 1996;15:429–36.CrossRefPubMedGoogle Scholar
  105. 105.
    Lieberman JA, Dunbar G, Segreti AC, Girgis RR, Seoane F, Beaver JS, Duan N, Hosford DA. A randomized exploratory trial of an alpha-7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology. 2013;38:968–75.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lindenmayer JP, Khan A. Galantamine augmentation of long-acting injectable risperidone for cognitive impairments in chronic schizophrenia. Schizophr Res. 2011;125:267–77.CrossRefPubMedGoogle Scholar
  107. 107.
    Livingstone PD, Dickinson JA, Srinivasan J, Kew JN, Wonnacott S. Glutamate-dopamine crosstalk in the rat prefrontal cortex is modulated by Alpha7 nicotinic receptors and potentiated by PNU-120596. J Mol Neurosci. 2010;40:172–6.CrossRefPubMedGoogle Scholar
  108. 108.
    Lynch G, Palmer LC, Gall CM. The likelihood of cognitive enhancement. Pharmacol Biochem Behav. 2011;99:116–29.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ma X, Li C, Meng H, Du L, Wang Q, Wang Y, Deng W, Liu X, Hu X, Murray RM, Collier DA, Li T. Premorbid tobacco smoking is associated with later age at onset in schizophrenia. Psychiatry Res. 2010;178:461–6.CrossRefPubMedGoogle Scholar
  110. 110.
    Mansvelder HD, Keath JR, Mcgehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron. 2002;33:905–19.CrossRefPubMedGoogle Scholar
  111. 111.
    Marti F, Arib O, Morel C, Dufresne V, Maskos U, Corringer PJ, DE Beaurepaire R, Faure P. Smoke extracts and nicotine, but not tobacco extracts, potentiate firing and burst activity of ventral tegmental area dopaminergic neurons in mice. Neuropsychopharmacology. 2011;36:2244–57.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Martin-Ruiz CM, Haroutunian VH, Long P, Young AH, Davis KL, Perry EK, Court JA. Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry. 2003;54:1222–33.CrossRefPubMedGoogle Scholar
  113. 113.
    Martin LF, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol. 2007;78:225–46.CrossRefPubMedGoogle Scholar
  114. 114.
    Martin LF, Kem WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl). 2004;174:54–64.CrossRefGoogle Scholar
  115. 115.
    Maskos U. The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol. 2008;153 Suppl 1:S438–45.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Mcgehee DS. Nicotine and synaptic plasticity in prefrontal cortex. Sci STKE. 2007;2007:pe44.CrossRefPubMedGoogle Scholar
  117. 117.
    Mcgehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science. 1995;269:1692–6.CrossRefPubMedGoogle Scholar
  118. 118.
    Meier MH, Caspi A, Reichenberg A, Keefe RS, Fisher HL, Harrington H, Houts R, Poulton R, Moffitt TE. Neuropsychological decline in schizophrenia from the premorbid to the postonset period: evidence from a Population-Representative Longitudinal Study. Am J Psychiatry. 2014;171(1):91–101.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Melchior L, Bertelsen B, Debes NM, Groth C, Skov L, Mikkelsen JD, Brondum-Nielsen K, Tumer Z. Microduplication of 15q13.3 and Xq21.31 in a family with Tourette syndrome and comorbidities. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:825–31.CrossRefPubMedGoogle Scholar
  120. 120.
    Mexal S, Berger R, Logel J, Ross RG, Freedman R, Leonard S. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers. J Mol Neurosci. 2010;40:185–95.CrossRefPubMedGoogle Scholar
  121. 121.
    Meynert T. The brain of mammals. New York: William Wood; 1872.Google Scholar
  122. 122.
    Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, Mcnaughton BL. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 1990;528:12–20.CrossRefPubMedGoogle Scholar
  123. 123.
    Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev. 2014;46(Pt 2):315–25.CrossRefPubMedGoogle Scholar
  124. 124.
    Moore H, Geyer MA, Carter CS, Barch DM. Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neurosci Biobehav Rev. 2013;37:2087–91.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Morley BJ, Mervis RF. Dendritic spine alterations in the hippocampus and parietal cortex of alpha7 nicotinic acetylcholine receptor knockout mice. Neuroscience. 2013;233:54–63.CrossRefPubMedGoogle Scholar
  126. 126.
    Neher E, Sakmann B, Steinbach JH. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 1978;375:219–28.CrossRefPubMedGoogle Scholar
  127. 127.
    Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC. Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron. 2014;82:63–70.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Noroozian M, Ghasemi S, Hosseini SM, Modabbernia A, Khodaie-Ardakani MR, Mirshafiee O, Farokhnia M, Tajdini M, Rezaei F, Salehi B, Ashrafi M, Yekehtaz H, Tabrizi M, Akhondzadeh S. A placebo-controlled study of tropisetron added to risperidone for the treatment of negative symptoms in chronic and stable schizophrenia. Psychopharmacology (Berl). 2013;228:595–602.CrossRefGoogle Scholar
  129. 129.
    Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ, Yee CM, Gretchen-Doorly D, Mintz J. Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull. 2011;37 Suppl 2:S33–40.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Nys M, Kesters D, Ulens C. Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol. 2013;86:1042–53.CrossRefPubMedGoogle Scholar
  131. 131.
    Oikawa H, Nakamichi N, Kambe Y, Ogura M, Yoneda Y. An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res. 2005;79:535–44.CrossRefPubMedGoogle Scholar
  132. 132.
    Olincy A, Braff DL, Adler LE, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Wagner BD, Freedman R. Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: results from the consortium on genetics of schizophrenia. Schizophr Res. 2010;119:175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Olincy A, Freedman R. Nicotinic mechanisms in the treatment of psychotic disorders: a focus on the alpha7 nicotinic receptor. Handb Exp Pharmacol. 2012;213:211–32.Google Scholar
  134. 134.
    Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006;63:630–8.CrossRefPubMedGoogle Scholar
  135. 135.
    Olincy A and Stevens KE. Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 2007;74:1192–201.Google Scholar
  136. 136.
    Pandya A, Yakel JL. Allosteric modulators of the alpha4beta2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2011;82:952–8.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol. 2013;86:1054–62.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Pang KC, Jiao X, Sinha S, Beck KD, Servatius RJ. Damage of GABAergic neurons in the medial septum impairs spatial working memory and extinction of active avoidance: effects on proactive interference. Hippocampus. 2011;21:835–46.PubMedGoogle Scholar
  139. 139.
    Papke RL. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol. 2014;89:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Papke RL, Kem WR, Soti F, López-Hernández GY, Horenstein NA. Activation and desensitization of nicotinic α7-type acetylcholine receptors by benzylidene anabaseines and nicotine. J Pharmacol Exp Ther. 2009;329:791–807.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem. 2002;82:468–81.CrossRefPubMedGoogle Scholar
  142. 142.
    Pi HJ, Otmakhov N, El Gaamouch F, Lemelin D, De Koninck P, Lisman J. CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proc Natl Acad Sci U S A. 2010;107:14437–42.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76:116–29.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology. 2007;32:17–34.CrossRefPubMedGoogle Scholar
  145. 145.
    Poisik OV, Shen JX, Jones S, Yakel JL. Functional alpha7-containing nicotinic acetylcholine receptors localize to cell bodies and proximal dendrites in the rat substantia nigra pars reticulata. J Physiol. 2008;586:1365–78.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Preskorn SH, Gawryl M, Dgetluck N, Palfreyman M, Bauer LO, Hilt DC. Normalizing effects of EVP-6124, an alpha-7 nicotinic partial agonist, on event-related potentials and cognition: a proof of concept, randomized trial in patients with schizophrenia. J Psychiatr Pract. 2014;20:12–24.CrossRefPubMedGoogle Scholar
  147. 147.
    Prickaerts J, van Goethem NP, Chesworth R, Shapiro G, Boess FG, Methfessel C, Reneerkens OAH, Flood DG, Hilt D, Gawryl M, Bertrand S, Bertrand D, König G. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology. 2012;62:1099–110.CrossRefPubMedGoogle Scholar
  148. 148.
    Reichenberg A, Weiser M, Caspi A, Knobler HY, Lubin G, Harvey PD, Rabinowitz J, Davidson M. Premorbid intellectual functioning and risk of schizophrenia and spectrum disorders. J Clin Exp Neuropsychol. 2006;28:193–207.CrossRefPubMedGoogle Scholar
  149. 149.
    Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem. 2003;80:332–42.CrossRefPubMedGoogle Scholar
  150. 150.
    Roh S, Hoeppner SS, Schoenfeld D, Fullerton CA, Stoeckel LE, Evins AE. Acute effects of mecamylamine and varenicline on cognitive performance in non-smokers with and without schizophrenia. Psychopharmacology (Berl). 2014;231:765–75.CrossRefGoogle Scholar
  151. 151.
    Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley III FD, Williams KE. Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology. 2007;52:985–94.CrossRefPubMedGoogle Scholar
  152. 152.
    Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S, Jatlow PI, Wexler BE, George TP. Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry. 2005;62:649–59.CrossRefPubMedGoogle Scholar
  153. 153.
    Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, Johnson EO, Rice JP, Goate AM, Bierut LJ. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav. 2010;9:741–50.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Schubert MH, Young KA, Hicks PB. Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biol Psychiatry. 2006;60:530–3.CrossRefPubMedGoogle Scholar
  155. 155.
    Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem Pharmacol. 2012;83:705–14.CrossRefPubMedGoogle Scholar
  156. 156.
    Shiina A, Shirayama Y, Niitsu T, Hashimoto T, Yoshida T, Hasegawa T, Haraguchi T, Kanahara N, Shiraishi T, Fujisaki M, Fukami G, Nakazato M, Iyo M, Hashimoto K. A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann Genet Psychiatry. 2010;9:27.CrossRefGoogle Scholar
  157. 157.
    Shim JC, Jung DU, Jung SS, Seo YS, Cho DM, Lee JH, Lee SW, Kong BG, Kang JW, Oh MK, Kim SD, Mcmahon RP, Kelly DL. Adjunctive varenicline treatment with antipsychotic medications for cognitive impairments in people with schizophrenia: a randomized double-blind placebo-controlled trial. Neuropsychopharmacology. 2012;37:660–8.CrossRefPubMedGoogle Scholar
  158. 158.
    Simosky JK, Stevens KE, Kem WR, Freedman R. Intragastric DMXB-A, an α7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry. 2001;50:493–500.CrossRefPubMedGoogle Scholar
  159. 159.
    Simpson GM, Mahmoud RA, Lasser RA, et al. A 1-year double-blind study of 2 doses of long-acting risperidone in stable patients with schizophrenia or schizoaffective disorder. J Clin. Psychiatry. 2006;67:1194–203.Google Scholar
  160. 160.
    Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, De Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–7.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Stevens KE, Kem WR, Mahnir VM, Freedman R. Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl). 1998;136:320–7.CrossRefGoogle Scholar
  162. 162.
    Stone JL, O’Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455:237–41.CrossRefGoogle Scholar
  163. 163.
    Suzuki T, Remington G, Mulsant BH, Uchida H, Rajji TK, Graff-Guerrero A, Mimura M, Mamo DC. Defining treatment-resistant schizophrenia and response to antipsychotics: a review and recommendation. Psychiatry Res. 2012;197:1–6.CrossRefPubMedGoogle Scholar
  164. 164.
    Swartz MS, Stroup TS, McEvoy JP, Davis SM, Rosenheck RA, Keefe RS, Hsiao JK, Lieberman JA. What CATIE found: results from the schizophrenia trial. Psychiatr Serv. 2008;59:500–6.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci. 2011;31:18155–65.CrossRefPubMedGoogle Scholar
  166. 166.
    Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110:1–23.CrossRefPubMedGoogle Scholar
  167. 167.
    Teles-Grilo Ruivo LM, Mellor JR. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci. 2013;5:2.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2007;28:14–22.CrossRefPubMedGoogle Scholar
  169. 169.
    Thomsen MS, Christensen DZ, Hansen HH, Redrobe JP, Mikkelsen JD. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment. Neuropharmacology. 2009;56:1001–9.CrossRefPubMedGoogle Scholar
  170. 170.
    Tracy DK, Shergill SS. Treatment refractory schizophrenia: definition and assessment. In: Gaughran F, Buckley P, editors. Treatment refractory schizophrenia: a clinical conundrum. Berlin: Springer; 2014.Google Scholar
  171. 171.
    Uteshev VV, Meyer EM, Papke RL. Activation and inhibition of native neuronal alpha-bungarotoxin-sensitive nicotinic ACh receptors. Brain Res. 2002;948:33–46.CrossRefPubMedGoogle Scholar
  172. 172.
    van Os J, Kapur S. Schizophrenia. Lancet. 2009;374:635–45.CrossRefPubMedGoogle Scholar
  173. 173.
    Verhoog MB, Mansvelder HD. Presynaptic ionotropic receptors controlling and modulating the rules for spike timing-dependent plasticity. Neural Plast. 2011;2011:870763.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Vingerhoets WA, Bloemen OJ, Bakker G, van Amelsvoort TA. Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: what’s the evidence? Front Psychiatry. 2013;4:157.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Waldo MC, Woodward L, Adler LE. Varenicline and P50 auditory gating in medicated schizophrenic patients: a pilot study. Psychiatry Res. 2010;175:179–80.CrossRefPubMedGoogle Scholar
  176. 176.
    Wallace TL, Porter RH. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol. 2011;82:891–903.CrossRefPubMedGoogle Scholar
  177. 177.
    Wang X, Lippi G, Carlson DM, Berg DK. Activation of alpha7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses. J Neurochem. 2013;127:632–43.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Weinberger AH, Sacco KA, Creeden CL, Vessicchio JC, Jatlow PI, George TP. Effects of acute abstinence, reinstatement, and mecamylamine on biochemical and behavioral measures of cigarette smoking in schizophrenia. Schizophr Res. 2007;91:217–25.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Wesnes K, Warburton DM. Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology (Berl). 1984;82:147–50.CrossRefGoogle Scholar
  180. 180.
    Wess J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci. 2003;24:414–20.CrossRefPubMedGoogle Scholar
  181. 181.
    Wilens TE, Decker MW. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: focus on cognition. Biochem Pharmacol. 2007;74:1212–23.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Wing VC, Wass CE, Soh DW, George TP. A review of neurobiological vulnerability factors and treatment implications for comorbid tobacco dependence in schizophrenia. Ann N Y Acad Sci. 2012;1248:89–106.CrossRefPubMedGoogle Scholar
  183. 183.
    Winterer G. Why do patients with schizophrenia smoke? Curr Opin Psychiatry. 2010;23:112–9.CrossRefPubMedGoogle Scholar
  184. 184.
    Winterer G, Gallinat J, Brinkmeyer J, Musso F, Kornhuber J, Thuerauf N, Rujescu D, Favis R, Sun Y, Franc MA, Ouwerkerk-Mahadevan S, Janssens L, Timmers M, Streffer JR. Allosteric alpha-7 nicotinic receptor modulation and P50 sensory gating in schizophrenia: a proof-of-mechanism study. Neuropharmacology. 2013;64:197–204.CrossRefPubMedGoogle Scholar
  185. 185.
    Wonnacott S. alpha-Bungarotoxin binds to low-affinity nicotine binding sites in rat brain. J Neurochem. 1986;47:1706–12.CrossRefPubMedGoogle Scholar
  186. 186.
    Wu J, Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol. 2011;82:800–7.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Yakel JL. Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch. 2013;465:441–50.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Yoshihara Y, DE Roo M, Muller D. Dendritic spine formation and stabilization. Curr Opin Neurobiol. 2009;19:146–53.CrossRefPubMedGoogle Scholar
  189. 189.
    Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, Finlayson K, Sharkey J. Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol. 2007;17:145–55.CrossRefPubMedGoogle Scholar
  190. 190.
    Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol. 2013;86:1122–32.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingsson T, Lewis G. Investigating the association between cigarette smoking and schizophrenia in a cohort study. Am J Psychiatry. 2003;160:2216–21.CrossRefPubMedGoogle Scholar
  192. 192.
    Zhang JP, Gallego JA, Robinson DG, Malhotra AK, Kane JM, Correll CU. Efficacy and safety of individual second-generation vs. first-generation antipsychotics in first-episode psychosis: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2013;16:1205–18.CrossRefPubMedGoogle Scholar
  193. 193.
    Ziedonis D, Hitsman B, Beckham JC, Zvolensky M, Adler LE, Audrain-Mcgovern J, Breslau N, Brown RA, George TP, Williams J, Calhoun PS, Riley WT. Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. Nicotine Tob Res. 2008;10:1691–715.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Derek K. Tracy
    • 1
    • 2
  • Valentina Casetti
    • 1
    • 2
  • Arann R. Rowe
    • 2
  • Louise Mercer
    • 2
  • Sukhwinder S. Shergill
    • 3
    • 2
  1. 1.Crisis, Inpatient, and Rehabilitation ServicesOxleas NHS Foundation TrustLondonUK
  2. 2.Cognition Schizophrenia and Imaging Laboratory, Department of Psychosis Studies, The Institute of PsychiatryKing’s CollegeLondonUK
  3. 3.The National Psychosis UnitSouth London and Maudsley NHS Foundation TrustLondonUK

Personalised recommendations