Skip to main content

Acetylcholinergic Nicotinic Receptors as Pharmacological Targets for Cognitive Enhancement: Emerging Evidence from Psychosis Populations

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Cognitive deficits have been recognised since the first conceptualisation of psychosis; indeed it was initially labelled ‘dementia praecox’, or presenile dementia, in recognition of the primacy of these problems. However, these were largely ignored – in part due to a lack of effective interventions – in the sixty or so years since the discovery of dopaminergic antagonist antipsychotic medications. In recent times there has been a renewed growth of interest in putative cognitive enhancers in this condition, with much work looking at agents that modulate the acetylcholinergic (ACh) system that is intimately linked with cognition and memory. Unlike memory sparing medications in dementia, which prevent the enzymatic degradation of synaptic ACh, in psychosis the emphasis has been on direct agonists. To date, several compounds have been tested in humans, and interesting early results support a pro-cognitive effect in some, but not all. A challenge, however, is understanding why only some appear to derive benefit, and whether any such factors can be used for predictive prescribing, so that more efficacious future agents can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

BPRS:

Brief psychiatric rating scale

CANTAB:

Cambridge neuropsychological test automated battery

CPT:

Continuous performance test

CPT-IP:

Continuous performance test – identical pairs version

DSST:

Digital symbol substitution test

GAF:

Global assessment of functioning

HRT-SD:

Hit reaction time variability

KMMSE:

Korean Mini-Mental State Examination

LOF:

Level of functioning

LTD:

Long-term depression

LTP:

Long-term potentiation

MAPK:

Mitogen-activated protein kinase

MATRICS:

Measurement and treatment research to improve cognition in schizophrenia

MCCB:

MATRICS consensus cognitive battery

nAChR:

Nicotinic acetylcholine receptor

NMDA:

N-methyl-D-aspartate

PANSS:

Positive and negative syndrome scale

PCP:

Phencyclidine

RBANS:

Repeatable battery for the assessment of neuropsychological status

RCT:

Randomised controlled trial

SANS:

Scale for the assessment of negative symptoms

References

  1. Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci. 1999;22:425–44; discussion 444–89.

    CAS  PubMed  Google Scholar 

  2. Ahnallen CG, Nestor PG, Shenton ME, Mccarley RW, Niznikiewicz MA. Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophr Res. 2008;100:261–9.

    Article  PubMed  Google Scholar 

  3. Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 2009;89:121–45.

    Article  CAS  PubMed  Google Scholar 

  4. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aliane V, Perez S, Bohren Y, Deniau JM, Kemel ML. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies. Brain. 2011;134:110–8.

    Article  PubMed  Google Scholar 

  6. Alkondon M, Pereira EF, Almeida LE, Randall WR, Albuquerque EX. Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology. 2000;39:2726–39.

    Article  CAS  PubMed  Google Scholar 

  7. Allott K, Liu P, Proffitt T-M, Killackey E. Cognition at illness onset as a predictor of later functional outcome in early psychosis: systematic review and methodological critique. Schizophr Res. 2011;125:221–35.

    Article  PubMed  Google Scholar 

  8. Arias HR. Positive and negative modulation of nicotinic receptors. Adv Protein Chem Struct Biol. 2010;80:153–203.

    Article  CAS  PubMed  Google Scholar 

  9. Barr AM, Procyshyn RM, Hui P, Johnson JL, Honer WG. Self-reported motivation to smoke in schizophrenia is related to antipsychotic drug treatment. Schizophr Res. 2008;100:252–60.

    Article  PubMed  Google Scholar 

  10. Benarroch EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology. 2013;80:1148–55.

    Article  PubMed  Google Scholar 

  11. Bentley P, Husain M, Dolan RJ. Effects of cholinergic enhancement on visual stimulation, spatial attention, and spatial working memory. Neuron. 2004;41:969–82.

    Article  CAS  PubMed  Google Scholar 

  12. Bertrand D, Gopalakrishnan M. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74:1155–63.

    Article  CAS  PubMed  Google Scholar 

  13. Bowie CR, Reichenberg A, Patterson TL, Heaton RK, Harvey PD. Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms. American. Journal of Psychiatry 2006;163:418–25. doi:10.1176/appi.ajp.163.3.418.

    Google Scholar 

  14. Bramon E, Rabe-Hesketh S, Sham P, et al. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research 2004;70:315–29.

    Google Scholar 

  15. Brandt AM. The rise, fall, and deadly persistence of the product that defined America. New York: Basic Books; 2007.

    Google Scholar 

  16. Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, Marks MJ, Collins AC, Leonard S. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology. 2000;23:351–64.

    Article  CAS  PubMed  Google Scholar 

  17. Bromet EJ, Naz B, Fochtmann LJ, Carlson GA, Tanenberg-Karant M. Long-term diagnostic stability and outcome in recent first-episode cohort studies of schizophrenia. Schizophr Bull. 2005;31:639–49.

    Article  PubMed  Google Scholar 

  18. Brudzynski SM. The ascending mesolimbic cholinergic system-a specific division of the reticular activating system involved in the initiation of negative emotional States. J Mol Neurosci. 2014;53:436–45.

    Article  CAS  PubMed  Google Scholar 

  19. Buccafusco JJ, Letchworth SR, Bencherif M, Lippiello PM. Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic–pharmacodynamic discordance. Trends Pharmacol Sci. 2005;26:352–60.

    Article  CAS  PubMed  Google Scholar 

  20. Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, Mcmahon RP. Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry. 2008;165:82–9.

    Article  PubMed  Google Scholar 

  21. Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull. 2007;33:1120–30.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Campbell NR, Fernandes CC, Halff AW, Berg DK. Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci. 2010;30:8734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrion RE, Goldberg TE, McLaughlin D, Auther AM, Correll CU, Cornblatt BA. Impact of neurocognition on social and role functioning in individuals at clinical high risk for psychosis. Am J Psychiatry. 2011;168:806–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Castner SA, Smagin GN, Piser TM, Wang Y, Smith JS, Christian EP, Mrzljak L, Williams GV. Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol Psychiatry. 2011;69:12–8.

    Article  CAS  PubMed  Google Scholar 

  25. Changeux JP, Devillers-Thiery A, Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984;225:1335–45.

    Article  CAS  PubMed  Google Scholar 

  26. Changeux JP, Edelstein SJ. Allosteric mechanisms of signal transduction. Science. 2005;308:1424–8.

    Article  CAS  PubMed  Google Scholar 

  27. Chen XS, Li CB, Smith RC, Xiao ZP, Wang JJ. Differential sensory gating functions between smokers and non-smokers among drug-naive first episode schizophrenic patients. Psychiatry Res. 2011;188:327–33.

    Article  PubMed  Google Scholar 

  28. Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol. 2013;86:1063–73.

    Article  CAS  PubMed  Google Scholar 

  29. Court J, Spurden D, Lloyd S, Mckeith I, Ballard C, Cairns N, Kerwin R, Perry R, Perry E. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J Neurochem. 1999;73:1590–7.

    Article  CAS  PubMed  Google Scholar 

  30. Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990;5:847–56.

    Article  CAS  PubMed  Google Scholar 

  31. Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW. Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex. 2004;14:922–32.

    Article  PubMed  Google Scholar 

  32. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.

    Article  CAS  PubMed  Google Scholar 

  33. Davidson M, Galderisi S, Weiser M, Werbeloff N, Fleischhacker WW, Keefe RS, Boter H, Keet IP, Prelipceanu D, Rybakowski JK, Libiger J, Hummer M, Dollfus S, Lopez-Ibor JJ, Hranov LG, Gaebel W, Peuskens J, Lindefors N, Riecher-Rossler A, Kahn RS. Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). Am J Psychiatry. 2009;166:675–82.

    Article  PubMed  Google Scholar 

  34. DE Leon J, Diaz FJ. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr Res. 2005;76:135–57.

    Article  PubMed  Google Scholar 

  35. Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res. 2011;221:389–411.

    Article  CAS  PubMed  Google Scholar 

  36. Demeter E, Sarter M. Leveraging the cortical cholinergic system to enhance attention. Neuropharmacology. 2013;64:294–304.

    Article  CAS  PubMed  Google Scholar 

  37. Deutsch SI, Schwartz BL, Schooler NR, Brown CH, Rosse RB, Rosse SM. Targeting alpha-7 nicotinic neurotransmission in schizophrenia: a novel agonist strategy. Schizophr Res. 2013;148:138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deutsch SI, Urbano MR, Neumann SA, Burket JA, Katz E. Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions? Clin Neuropharmacol. 2010;33:114–20.

    Article  CAS  PubMed  Google Scholar 

  39. Dickinson JA, Hanrott KE, Mok MH, Kew JN, Wonnacott S. Differential coupling of alpha7 and non-alpha7 nicotinic acetylcholine receptors to calcium-induced calcium release and voltage-operated calcium channels in PC12 cells. J Neurochem. 2007;100:1089–96.

    Article  CAS  PubMed  Google Scholar 

  40. Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res. 2011;221:505–14.

    Article  CAS  PubMed  Google Scholar 

  41. Dyer MA, Freudenreich O, Culhane MA, Pachas GN, Deckersbach T, Murphy E, Goff DC, Evins AE. High-dose galantamine augmentation inferior to placebo on attention, inhibitory control and working memory performance in nonsmokers with schizophrenia. Schizophr Res. 2008;102:88–95.

    Article  PubMed  PubMed Central  Google Scholar 

  42. English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsaki G, Deisseroth K, Tepper JM, Koos T. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci. 2012;15:123–30.

    Article  CAS  Google Scholar 

  43. Fayuk D, Yakel JL. Ca2+ permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. J Physiol. 2005;566:759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fioravanti M, Bianchi V, Cinti ME. Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence. BMC Psychiatry. 2012;12:64.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fransen E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron. 2006;49:735–46.

    Article  CAS  PubMed  Google Scholar 

  46. Frazier JA, Giuliano AJ, Johnson JL, Yakutis L, Youngstrom EA, Breiger D, Sikich L, Findling RL, McClellan J, Hamer RM, Vitiello B, Lieberman JA, Hooper SR. Neurocognitive outcomes in the treatment of early-onset schizophrenia spectrum disorders study. J Am Acad Child Adolesc Psychiatry. 2012;51:496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Freedman R, Adams CE, Leonard S. The α7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000;20:299–306.

    Article  CAS  PubMed  Google Scholar 

  48. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A. 1997;94:587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry. 2008;165:1040–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fuchs S, Perl O, Ilani T, Strous RD. The a7 nicotinic receptor as a potential peripheral marker for schizophrenia. Eur Neuropsychopharmacol. 2004;14:S141.

    Article  Google Scholar 

  51. Gentry CL, Lukas RJ. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 2002;1:359–85.

    Article  CAS  PubMed  Google Scholar 

  52. George TP, Ziedonis DM. Addressing tobacco dependence in psychiatric practice: promises and pitfalls. Can J Psychiatry. 2009;54:353–5.

    PubMed  Google Scholar 

  53. Ghoneim MM, Mewaldt SP. Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia. 1975;44:257–62.

    Article  CAS  PubMed  Google Scholar 

  54. Gilbert DG, Gilbert BO. Personality, psychopathology, and nicotine response as mediators of the genetics of smoking. Behav Genet. 1995;25:133–47.

    Article  CAS  PubMed  Google Scholar 

  55. Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol. 1999;411:693–704.

    Article  CAS  PubMed  Google Scholar 

  56. Giovannini MG. The role of the extracellular signal-regulated kinase pathway in memory encoding. Rev Neurosci. 2006;17:619–34.

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg TE, Weinberger DR. Genes and the parsing of cognitive processes. Trends Cogn Sci. 2004;8:325–35.

    Article  PubMed  Google Scholar 

  58. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74:363–96.

    Article  CAS  PubMed  Google Scholar 

  59. Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, Jahanshahi M. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37:2676–88.

    Article  PubMed  Google Scholar 

  60. Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res. 2004;72:41–51.

    Article  PubMed  Google Scholar 

  61. Gregory KJ, Dong EN, Meiler J, Conn PJ. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology. 2011;60:66–81.

    Article  CAS  PubMed  Google Scholar 

  62. Grinevich VP, Papke RL, Lippiello PM, Bencherif M. Atypical antipsychotics as noncompetitive inhibitors of alpha4beta2 and alpha7 neuronal nicotinic receptors. Neuropharmacology. 2009;57:183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol. 2014;261:1939.

    Article  PubMed  Google Scholar 

  64. Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011;71:155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guillozet-Bongaarts AL, Hyde TM, Dalley RA, Hawrylycz MJ, Henry A, Hof PR, Hohmann J, Jones AR, Kuan CL, Royall J, Shen E, Swanson B, Zeng H, Kleinman JE. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2014;19:478–85.

    Article  CAS  PubMed  Google Scholar 

  66. Hall MH, Taylor G, Salisbury DF, Levy DL. Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophr Bull. 2011;37:1187–99.

    Article  PubMed  Google Scholar 

  67. Harati H, Barbelivien A, Cosquer B, Majchrzak M, Cassel JC. Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task. Neuroscience. 2008;153:72–83.

    Article  CAS  PubMed  Google Scholar 

  68. Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R. Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology. 2004;29:1378–85.

    Article  CAS  PubMed  Google Scholar 

  69. Harrison G, Hopper K, Craig T, Laska E, Siegel C, Wanderling J, Dube KC, Ganev K, Giel R, An Der Heiden W, Holmberg SK, Janca A, Lee PW, Leon CA, Malhotra S, Marsella AJ, Nakane Y, Sartorius N, Shen Y, Skoda C, Thara R, Tsirkin SJ, Varma VK, Walsh D, Wiersma D. Recovery from psychotic illness: a 15- and 25-year international follow-up study. Br J Psychiatry. 2001;178:506–17.

    Article  CAS  PubMed  Google Scholar 

  70. Harvey PD, Howanitz E, Parrella M, White L, Davidson M, Mohs RC, Hoblyn J, Davis KL. Symptoms, cognitive functioning, and adaptive skills in geriatric patients with lifelong schizophrenia: a comparison across treatment sites. Am J Psychiatry. 1998;155:1080–6.

    Article  CAS  PubMed  Google Scholar 

  71. Harvey PD, Rabinowitz J, Eerdekens M, Davidson M. Treatment of cognitive impairment in early psychosis: a comparison of risperidone and haloperidol in a large long-term trial. Am J Psychiatry. 2005;162:1888–95.

    Article  PubMed  Google Scholar 

  72. Hashimoto K, Iyo M, Freedman R, Stevens KE. Tropisetron improves deficient inhibitory auditory processing in DBA/2 mice: role of alpha 7 nicotinic acetylcholine receptors. Psychopharmacology (Berl). 2005;183:13–9.

    Article  CAS  Google Scholar 

  73. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36:52–73.

    Article  CAS  PubMed  Google Scholar 

  74. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12:426–45.

    Article  CAS  PubMed  Google Scholar 

  75. Heishman SJ, Kleykamp BA, Singleton EG. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology (Berl). 2010;210:453–69.

    Article  CAS  Google Scholar 

  76. Hong LE, Schroeder M, Ross TJ, Buchholz B, Salmeron BJ, Wonodi I, Thaker GK, Stein EA. Nicotine enhances but does not normalize visual sustained attention and the associated brain network in schizophrenia. Schizophr Bull. 2011;37:416–25.

    Article  PubMed  Google Scholar 

  77. Hsieh CY, Cruikshank SJ, Metherate R. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Res. 2000;880:51–64.

    Article  CAS  PubMed  Google Scholar 

  78. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137:22–54.

    Article  CAS  PubMed  Google Scholar 

  79. Jaaskelainen E, Juola P, Hirvonen N, Mcgrath JJ, Saha S, Isohanni M, Veijola J, Miettunen J. A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull. 2013;39:1296–306.

    Article  PubMed  Google Scholar 

  80. Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem. 2005;48:4705–45.

    Article  CAS  PubMed  Google Scholar 

  81. Jeong Da U, Lee JE, Lee SE, Chang WS, Kim SJ, Chang JW. Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. Biomed Res Int. 2014;2014:568587.

    PubMed  PubMed Central  Google Scholar 

  82. Jones CK, Byun N, Bubser M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology. 2012;37:16–42.

    Article  CAS  PubMed  Google Scholar 

  83. Tracy DK, Sendt K-V, Shergill S. Antipsychotic polypharmacy: still dirty, but hardly a secret. A systematic review and clinical guide. Curr Psychopharmacol. 2013;2:143–71.

    Article  CAS  Google Scholar 

  84. Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry. 2013;70:1107–12.

    Article  PubMed  Google Scholar 

  85. Kandel ER. Calcium and the control of synaptic strength by learning. Nature. 1981;293:697–700.

    Article  CAS  PubMed  Google Scholar 

  86. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE trial. Arch Gen Psychiatry. 2007;64:633–47.

    Article  CAS  PubMed  Google Scholar 

  87. Keefe RS, Sweeney JA, Gu H, Hamer RM, Perkins DO, McEvoy JP, Lieberman JA. Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am J Psychiatry. 2007;164:1061–71.

    Article  PubMed  Google Scholar 

  88. Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci. 2014;8:109.

    PubMed  PubMed Central  Google Scholar 

  89. Kitchen H, Rofail D, Heron L, Sacco P. Cognitive impairment associated with schizophrenia: a review of the humanistic burden. Adv Ther. 2012;29:148–62.

    Article  PubMed  Google Scholar 

  90. Kleykamp BA, Jennings JM, Eissenberg T. Effects of transdermal nicotine and concurrent smoking on cognitive performance in tobacco-abstinent smokers. Exp Clin Psychopharmacol. 2011;19:75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kraepelin E. Psychiatrie: Ein Lehrbuch fur Studirende und Aerzte. Funfte, vollstandig umgearbeitete Auflage. Leipzig: Verlag von J. A. Barth; 1896.

    Google Scholar 

  92. Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, Mai JK, Zilles K, Bauer A, Matusch A, Schulz RJ, Noreik M, Buhrle CP, Maintz D, Woopen C, Haussermann P, Hellmich M, Klosterkotter J, Wiltfang J, Maarouf M, Freund HJ, Sturm V. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20(3):353–60.

    Article  CAS  PubMed  Google Scholar 

  93. Langley JN. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol. 1905;33:374–413.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Laplante F, Zhang ZW, Huppe-Gourgues F, Dufresne MM, Vaucher E, Sullivan RM. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats. Neuropharmacology. 2012;63:1075–84.

    Article  CAS  PubMed  Google Scholar 

  95. Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284:2606–10.

    Article  CAS  PubMed  Google Scholar 

  96. LE Novere N, Changeux JP. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 1995;40:155–72.

    Article  PubMed  Google Scholar 

  97. Lee CT, Fuemmeler BF, Mcclernon FJ, Ashley-Koch A, Kollins SH. Nicotinic receptor gene variants interact with attention deficient hyperactive disorder symptoms to predict smoking trajectories from early adolescence to adulthood. Addict Behav. 2013;38:2683–9.

    Article  PubMed  Google Scholar 

  98. Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J Neurotrauma. 2013;30:131–9.

    Article  PubMed  Google Scholar 

  99. Lee S-W, Lee J-G, Lee B-J et al. A 12-week, double-blind, placebo controlled trial of galantamine adjunctive treatment to conventional antipsychotics for the cognitive impairments in chronic schizophrenia. International Clinical Psychopharmacology. 2007;22:63–68.

    Google Scholar 

  100. Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther. 2009;122:302–11.

    Article  CAS  PubMed  Google Scholar 

  101. Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P, Zerbe G, Olincy A, Ross RG, Adler LE, Freedman R. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry. 2002;59:1085–96.

    Article  CAS  PubMed  Google Scholar 

  102. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lassig B, Salanti G, Davis JM. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382:951–62.

    Article  CAS  PubMed  Google Scholar 

  103. Levin ED, Mcclernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl). 2006;184:523–39.

    Article  CAS  Google Scholar 

  104. Levin ED, Wilson W, Rose JE, McEvoy J. Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology. 1996;15:429–36.

    Article  CAS  PubMed  Google Scholar 

  105. Lieberman JA, Dunbar G, Segreti AC, Girgis RR, Seoane F, Beaver JS, Duan N, Hosford DA. A randomized exploratory trial of an alpha-7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology. 2013;38:968–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lindenmayer JP, Khan A. Galantamine augmentation of long-acting injectable risperidone for cognitive impairments in chronic schizophrenia. Schizophr Res. 2011;125:267–77.

    Article  PubMed  Google Scholar 

  107. Livingstone PD, Dickinson JA, Srinivasan J, Kew JN, Wonnacott S. Glutamate-dopamine crosstalk in the rat prefrontal cortex is modulated by Alpha7 nicotinic receptors and potentiated by PNU-120596. J Mol Neurosci. 2010;40:172–6.

    Article  CAS  PubMed  Google Scholar 

  108. Lynch G, Palmer LC, Gall CM. The likelihood of cognitive enhancement. Pharmacol Biochem Behav. 2011;99:116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma X, Li C, Meng H, Du L, Wang Q, Wang Y, Deng W, Liu X, Hu X, Murray RM, Collier DA, Li T. Premorbid tobacco smoking is associated with later age at onset in schizophrenia. Psychiatry Res. 2010;178:461–6.

    Article  PubMed  Google Scholar 

  110. Mansvelder HD, Keath JR, Mcgehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron. 2002;33:905–19.

    Article  CAS  PubMed  Google Scholar 

  111. Marti F, Arib O, Morel C, Dufresne V, Maskos U, Corringer PJ, DE Beaurepaire R, Faure P. Smoke extracts and nicotine, but not tobacco extracts, potentiate firing and burst activity of ventral tegmental area dopaminergic neurons in mice. Neuropsychopharmacology. 2011;36:2244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martin-Ruiz CM, Haroutunian VH, Long P, Young AH, Davis KL, Perry EK, Court JA. Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry. 2003;54:1222–33.

    Article  CAS  PubMed  Google Scholar 

  113. Martin LF, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol. 2007;78:225–46.

    Article  CAS  PubMed  Google Scholar 

  114. Martin LF, Kem WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl). 2004;174:54–64.

    Article  CAS  Google Scholar 

  115. Maskos U. The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol. 2008;153 Suppl 1:S438–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mcgehee DS. Nicotine and synaptic plasticity in prefrontal cortex. Sci STKE. 2007;2007:pe44.

    Article  PubMed  Google Scholar 

  117. Mcgehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science. 1995;269:1692–6.

    Article  CAS  PubMed  Google Scholar 

  118. Meier MH, Caspi A, Reichenberg A, Keefe RS, Fisher HL, Harrington H, Houts R, Poulton R, Moffitt TE. Neuropsychological decline in schizophrenia from the premorbid to the postonset period: evidence from a Population-Representative Longitudinal Study. Am J Psychiatry. 2014;171(1):91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Melchior L, Bertelsen B, Debes NM, Groth C, Skov L, Mikkelsen JD, Brondum-Nielsen K, Tumer Z. Microduplication of 15q13.3 and Xq21.31 in a family with Tourette syndrome and comorbidities. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:825–31.

    Article  CAS  PubMed  Google Scholar 

  120. Mexal S, Berger R, Logel J, Ross RG, Freedman R, Leonard S. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers. J Mol Neurosci. 2010;40:185–95.

    Article  CAS  PubMed  Google Scholar 

  121. Meynert T. The brain of mammals. New York: William Wood; 1872.

    Google Scholar 

  122. Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, Mcnaughton BL. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 1990;528:12–20.

    Article  CAS  PubMed  Google Scholar 

  123. Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev. 2014;46(Pt 2):315–25.

    Article  CAS  PubMed  Google Scholar 

  124. Moore H, Geyer MA, Carter CS, Barch DM. Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neurosci Biobehav Rev. 2013;37:2087–91.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Morley BJ, Mervis RF. Dendritic spine alterations in the hippocampus and parietal cortex of alpha7 nicotinic acetylcholine receptor knockout mice. Neuroscience. 2013;233:54–63.

    Article  CAS  PubMed  Google Scholar 

  126. Neher E, Sakmann B, Steinbach JH. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch. 1978;375:219–28.

    Article  CAS  PubMed  Google Scholar 

  127. Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC. Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron. 2014;82:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Noroozian M, Ghasemi S, Hosseini SM, Modabbernia A, Khodaie-Ardakani MR, Mirshafiee O, Farokhnia M, Tajdini M, Rezaei F, Salehi B, Ashrafi M, Yekehtaz H, Tabrizi M, Akhondzadeh S. A placebo-controlled study of tropisetron added to risperidone for the treatment of negative symptoms in chronic and stable schizophrenia. Psychopharmacology (Berl). 2013;228:595–602.

    Article  CAS  Google Scholar 

  129. Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ, Yee CM, Gretchen-Doorly D, Mintz J. Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull. 2011;37 Suppl 2:S33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nys M, Kesters D, Ulens C. Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol. 2013;86:1042–53.

    Article  CAS  PubMed  Google Scholar 

  131. Oikawa H, Nakamichi N, Kambe Y, Ogura M, Yoneda Y. An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res. 2005;79:535–44.

    Article  CAS  PubMed  Google Scholar 

  132. Olincy A, Braff DL, Adler LE, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Wagner BD, Freedman R. Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: results from the consortium on genetics of schizophrenia. Schizophr Res. 2010;119:175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Olincy A, Freedman R. Nicotinic mechanisms in the treatment of psychotic disorders: a focus on the alpha7 nicotinic receptor. Handb Exp Pharmacol. 2012;213:211–32.

    Google Scholar 

  134. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006;63:630–8.

    Article  CAS  PubMed  Google Scholar 

  135. Olincy A and Stevens KE. Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 2007;74:1192–201.

    Google Scholar 

  136. Pandya A, Yakel JL. Allosteric modulators of the alpha4beta2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2011;82:952–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol. 2013;86:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pang KC, Jiao X, Sinha S, Beck KD, Servatius RJ. Damage of GABAergic neurons in the medial septum impairs spatial working memory and extinction of active avoidance: effects on proactive interference. Hippocampus. 2011;21:835–46.

    CAS  PubMed  Google Scholar 

  139. Papke RL. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol. 2014;89:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Papke RL, Kem WR, Soti F, López-Hernández GY, Horenstein NA. Activation and desensitization of nicotinic α7-type acetylcholine receptors by benzylidene anabaseines and nicotine. J Pharmacol Exp Ther. 2009;329:791–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem. 2002;82:468–81.

    Article  CAS  PubMed  Google Scholar 

  142. Pi HJ, Otmakhov N, El Gaamouch F, Lemelin D, De Koninck P, Lisman J. CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proc Natl Acad Sci U S A. 2010;107:14437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76:116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology. 2007;32:17–34.

    Article  CAS  PubMed  Google Scholar 

  145. Poisik OV, Shen JX, Jones S, Yakel JL. Functional alpha7-containing nicotinic acetylcholine receptors localize to cell bodies and proximal dendrites in the rat substantia nigra pars reticulata. J Physiol. 2008;586:1365–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Preskorn SH, Gawryl M, Dgetluck N, Palfreyman M, Bauer LO, Hilt DC. Normalizing effects of EVP-6124, an alpha-7 nicotinic partial agonist, on event-related potentials and cognition: a proof of concept, randomized trial in patients with schizophrenia. J Psychiatr Pract. 2014;20:12–24.

    Article  PubMed  Google Scholar 

  147. Prickaerts J, van Goethem NP, Chesworth R, Shapiro G, Boess FG, Methfessel C, Reneerkens OAH, Flood DG, Hilt D, Gawryl M, Bertrand S, Bertrand D, König G. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology. 2012;62:1099–110.

    Article  CAS  PubMed  Google Scholar 

  148. Reichenberg A, Weiser M, Caspi A, Knobler HY, Lubin G, Harvey PD, Rabinowitz J, Davidson M. Premorbid intellectual functioning and risk of schizophrenia and spectrum disorders. J Clin Exp Neuropsychol. 2006;28:193–207.

    Article  PubMed  Google Scholar 

  149. Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem. 2003;80:332–42.

    Article  CAS  PubMed  Google Scholar 

  150. Roh S, Hoeppner SS, Schoenfeld D, Fullerton CA, Stoeckel LE, Evins AE. Acute effects of mecamylamine and varenicline on cognitive performance in non-smokers with and without schizophrenia. Psychopharmacology (Berl). 2014;231:765–75.

    Article  CAS  Google Scholar 

  151. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley III FD, Williams KE. Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology. 2007;52:985–94.

    Article  CAS  PubMed  Google Scholar 

  152. Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S, Jatlow PI, Wexler BE, George TP. Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry. 2005;62:649–59.

    Article  PubMed  Google Scholar 

  153. Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, Johnson EO, Rice JP, Goate AM, Bierut LJ. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav. 2010;9:741–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schubert MH, Young KA, Hicks PB. Galantamine improves cognition in schizophrenic patients stabilized on risperidone. Biol Psychiatry. 2006;60:530–3.

    Article  CAS  PubMed  Google Scholar 

  155. Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem Pharmacol. 2012;83:705–14.

    Article  CAS  PubMed  Google Scholar 

  156. Shiina A, Shirayama Y, Niitsu T, Hashimoto T, Yoshida T, Hasegawa T, Haraguchi T, Kanahara N, Shiraishi T, Fujisaki M, Fukami G, Nakazato M, Iyo M, Hashimoto K. A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann Genet Psychiatry. 2010;9:27.

    Article  Google Scholar 

  157. Shim JC, Jung DU, Jung SS, Seo YS, Cho DM, Lee JH, Lee SW, Kong BG, Kang JW, Oh MK, Kim SD, Mcmahon RP, Kelly DL. Adjunctive varenicline treatment with antipsychotic medications for cognitive impairments in people with schizophrenia: a randomized double-blind placebo-controlled trial. Neuropsychopharmacology. 2012;37:660–8.

    Article  CAS  PubMed  Google Scholar 

  158. Simosky JK, Stevens KE, Kem WR, Freedman R. Intragastric DMXB-A, an α7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry. 2001;50:493–500.

    Article  CAS  PubMed  Google Scholar 

  159. Simpson GM, Mahmoud RA, Lasser RA, et al. A 1-year double-blind study of 2 doses of long-acting risperidone in stable patients with schizophrenia or schizoaffective disorder. J Clin. Psychiatry. 2006;67:1194–203.

    Google Scholar 

  160. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, De Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Stevens KE, Kem WR, Mahnir VM, Freedman R. Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl). 1998;136:320–7.

    Article  CAS  Google Scholar 

  162. Stone JL, O’Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455:237–41.

    Article  CAS  Google Scholar 

  163. Suzuki T, Remington G, Mulsant BH, Uchida H, Rajji TK, Graff-Guerrero A, Mimura M, Mamo DC. Defining treatment-resistant schizophrenia and response to antipsychotics: a review and recommendation. Psychiatry Res. 2012;197:1–6.

    Article  PubMed  Google Scholar 

  164. Swartz MS, Stroup TS, McEvoy JP, Davis SM, Rosenheck RA, Keefe RS, Hsiao JK, Lieberman JA. What CATIE found: results from the schizophrenia trial. Psychiatr Serv. 2008;59:500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci. 2011;31:18155–65.

    Article  CAS  PubMed  Google Scholar 

  166. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110:1–23.

    Article  PubMed  Google Scholar 

  167. Teles-Grilo Ruivo LM, Mellor JR. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci. 2013;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2007;28:14–22.

    Article  CAS  PubMed  Google Scholar 

  169. Thomsen MS, Christensen DZ, Hansen HH, Redrobe JP, Mikkelsen JD. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment. Neuropharmacology. 2009;56:1001–9.

    Article  CAS  PubMed  Google Scholar 

  170. Tracy DK, Shergill SS. Treatment refractory schizophrenia: definition and assessment. In: Gaughran F, Buckley P, editors. Treatment refractory schizophrenia: a clinical conundrum. Berlin: Springer; 2014.

    Google Scholar 

  171. Uteshev VV, Meyer EM, Papke RL. Activation and inhibition of native neuronal alpha-bungarotoxin-sensitive nicotinic ACh receptors. Brain Res. 2002;948:33–46.

    Article  CAS  PubMed  Google Scholar 

  172. van Os J, Kapur S. Schizophrenia. Lancet. 2009;374:635–45.

    Article  CAS  PubMed  Google Scholar 

  173. Verhoog MB, Mansvelder HD. Presynaptic ionotropic receptors controlling and modulating the rules for spike timing-dependent plasticity. Neural Plast. 2011;2011:870763.

    PubMed  PubMed Central  Google Scholar 

  174. Vingerhoets WA, Bloemen OJ, Bakker G, van Amelsvoort TA. Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: what’s the evidence? Front Psychiatry. 2013;4:157.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Waldo MC, Woodward L, Adler LE. Varenicline and P50 auditory gating in medicated schizophrenic patients: a pilot study. Psychiatry Res. 2010;175:179–80.

    Article  CAS  PubMed  Google Scholar 

  176. Wallace TL, Porter RH. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol. 2011;82:891–903.

    Article  CAS  PubMed  Google Scholar 

  177. Wang X, Lippi G, Carlson DM, Berg DK. Activation of alpha7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses. J Neurochem. 2013;127:632–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weinberger AH, Sacco KA, Creeden CL, Vessicchio JC, Jatlow PI, George TP. Effects of acute abstinence, reinstatement, and mecamylamine on biochemical and behavioral measures of cigarette smoking in schizophrenia. Schizophr Res. 2007;91:217–25.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wesnes K, Warburton DM. Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology (Berl). 1984;82:147–50.

    Article  CAS  Google Scholar 

  180. Wess J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci. 2003;24:414–20.

    Article  CAS  PubMed  Google Scholar 

  181. Wilens TE, Decker MW. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: focus on cognition. Biochem Pharmacol. 2007;74:1212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wing VC, Wass CE, Soh DW, George TP. A review of neurobiological vulnerability factors and treatment implications for comorbid tobacco dependence in schizophrenia. Ann N Y Acad Sci. 2012;1248:89–106.

    Article  CAS  PubMed  Google Scholar 

  183. Winterer G. Why do patients with schizophrenia smoke? Curr Opin Psychiatry. 2010;23:112–9.

    Article  PubMed  Google Scholar 

  184. Winterer G, Gallinat J, Brinkmeyer J, Musso F, Kornhuber J, Thuerauf N, Rujescu D, Favis R, Sun Y, Franc MA, Ouwerkerk-Mahadevan S, Janssens L, Timmers M, Streffer JR. Allosteric alpha-7 nicotinic receptor modulation and P50 sensory gating in schizophrenia: a proof-of-mechanism study. Neuropharmacology. 2013;64:197–204.

    Article  CAS  PubMed  Google Scholar 

  185. Wonnacott S. alpha-Bungarotoxin binds to low-affinity nicotine binding sites in rat brain. J Neurochem. 1986;47:1706–12.

    Article  CAS  PubMed  Google Scholar 

  186. Wu J, Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol. 2011;82:800–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yakel JL. Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch. 2013;465:441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yoshihara Y, DE Roo M, Muller D. Dendritic spine formation and stabilization. Curr Opin Neurobiol. 2009;19:146–53.

    Article  CAS  PubMed  Google Scholar 

  189. Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, Finlayson K, Sharkey J. Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol. 2007;17:145–55.

    Article  CAS  PubMed  Google Scholar 

  190. Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol. 2013;86:1122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingsson T, Lewis G. Investigating the association between cigarette smoking and schizophrenia in a cohort study. Am J Psychiatry. 2003;160:2216–21.

    Article  PubMed  Google Scholar 

  192. Zhang JP, Gallego JA, Robinson DG, Malhotra AK, Kane JM, Correll CU. Efficacy and safety of individual second-generation vs. first-generation antipsychotics in first-episode psychosis: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2013;16:1205–18.

    Article  CAS  PubMed  Google Scholar 

  193. Ziedonis D, Hitsman B, Beckham JC, Zvolensky M, Adler LE, Audrain-Mcgovern J, Breslau N, Brown RA, George TP, Williams J, Calhoun PS, Riley WT. Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. Nicotine Tob Res. 2008;10:1691–715.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek K. Tracy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Tracy, D.K., Casetti, V., Rowe, A.R., Mercer, L., Shergill, S.S. (2016). Acetylcholinergic Nicotinic Receptors as Pharmacological Targets for Cognitive Enhancement: Emerging Evidence from Psychosis Populations. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_42

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics