Prolactin and Somatostatin Responses to Antidepressant Therapy

  • Agata Faron-Górecka
  • Kinga Szafran-Pilch


Neuropeptides have been implicated in the physiology and pathophysiology of stress responses and therefore may play an important role in the pathogenesis of affective disorders such as major depressive disorder (MDD). The data presented in this chapter demonstrate the role of prolactin (PRL) and somatostatin (STT) in the pathology and pharmacotherapy of MDD, focusing particularly on the response to antidepressant treatment, and compare the available data with the results obtained in our laboratory using in vitro model (HEK293 cells line) and the well-validated chronic mild stress (CMS) animal model of MDD.


Major Depressive Disorder Anterior Cingulate Cortex Chronic Mild Stress Seasonal Affective Disorder GPCR Heterodimers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arancibia S, Epelbaum J, Boyer R, Assenmacher I. In vivo release of somatostatin from rat median eminence after local K+ infusion or delivery of nociceptive stress. Neurosci Lett. 1984;50(1–3):97–102.CrossRefPubMedGoogle Scholar
  2. 2.
    Arancibia S, Rage F, Graugés P, Gómez F, Tapia-Arancibia L, Armario A. Rapid modifications of somatostatin neuron activity in the periventricular nucleus after acute stress. Exp Brain Res. 2000;134(2):261–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Bakowska JC, Morrell JI. Atlas of the neurons that express mRNA for the long form of the prolactin receptor in the forebrain of the female rat. J Comp Neurol. 1997;386:161–77.CrossRefPubMedGoogle Scholar
  4. 4.
    Baragli A, Alturaihi H, Watt HL, Abdallah A, Kumar U. Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2: co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell Signal. 2007;19(11):2304–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans? Endocr Rev. 2008;29:1–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Bernichtein S, Touraine P, Goffin V. New concepts in prolactin biology. J Endocrinol. 2010;206(1):1–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–68.CrossRefPubMedGoogle Scholar
  8. 8.
    Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield Jr HJ. The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res. 1992;572:117–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Bravo JA, Dinan TG, Cryan JF. Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. Front Mol Neurosci. 2014;10:7–24.Google Scholar
  10. 10.
    Butler RK, White LC, Frederick-Duus D, Kaigler KF, Fadel JR, Wilson MA. Comparison of the activation of somatostatin- and neuropeptide Y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors. Exp Neurol. 2012;238(1):52–63.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Buysse DJ, Tu XM, Cherry CR, Begley AE, Kowalski J, Kupfer DJ, Frank E. Pretreatment REM sleep and subjective sleep quality distinguish depressed psychotherapy remitters and nonremitters. Biol Psychiatry. 1999;45(2):205–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Chesselet MF, Reisine TD. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. J Neurosci. 1983;3(1):232–6.PubMedGoogle Scholar
  13. 13.
    Cleare AJ, Murray RM, O’Keane V. Assessment of serotonergic function in major depression using d-fenfluramine: relation to clinical variables and antidepressant response. Biol Psychiatry. 1998;44:555–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Coker F, Taylor D. Antidepressant-induced hyperprolactinaemia. Incidence, mechanisms and management. CNS Drugs. 2010;24:563–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology. 2008;33:3–17. Review.CrossRefPubMedGoogle Scholar
  16. 16.
    Depue RA, Arbisi P, Krauss S, Iacono WG, Leon A, Muir R, Allen J. Seasonal independence of low prolactin concentration and high spontaneous eye blink rates in unipolar and bipolar II seasonal affective disorder. Arch Gen Psychiatry. 1990;47:356–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Dorshkind K, Horseman ND. Anterior pituitary hormones, stress, and immune system homeostasis. Bioessays. 2001;23:288–94. Review.CrossRefPubMedGoogle Scholar
  18. 18.
    Drago F. Prolactin and sexual behavior: a review. Neurosci Biobehav Rev. 1984;8:433–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Drago F, Pulvirenti L, Spadaro F, Pennisi G. Effects of TRH and prolactin in the behavioral despair (swim) model of depression in rats. Psychoneuroendocrinology. 1990;15(5–6):349–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry. 1999;46:1375–87.CrossRefPubMedGoogle Scholar
  21. 21.
    Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. Neurotransmitter switching in the adult brain regulates behavior. Science. 2013;340(6131):449–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Emiliano AB, Fudge JL. From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology. 2004;29(5):833–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Engin E, Stellbrink J, Treit D, Dickson CT. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience. 2008;157(3):666–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl). 2009;206(2):281–9.CrossRefGoogle Scholar
  25. 25.
    Faron-Górecka A, Kuśmider M, Kolasa M, Zurawek D, Gruca P, Papp M, Szafran K, Solich J, Pabian P, Romańska I, Antkiewicz-Michaluk L, Dziedzicka-Wasylewska M. Prolactin and its receptors in the chronic mild stress rat model of depression. Brain Res. 2014;1555:48–59.CrossRefPubMedGoogle Scholar
  26. 26.
    Faron-Górecka A, Kuśmider M, Solich J, Kolasa M, Szafran K, Zurawek D, Pabian P, Dziedzicka-Wasylewska M. Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs. Pharmacol Rep. 2013;65:1640–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Fava GA, Fava M, Kellner R, Serafini E, Mastrogiacomo I. Depression hostility and anxiety in hyperprolactinemic amenorrhea. Psychother Psychosom. 1981;36:122–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Ferone D. Somatostatin and dopamine receptors. Tumori. 2010;96(5):802–5.PubMedGoogle Scholar
  29. 29.
    Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80:1523–631. Review.PubMedGoogle Scholar
  30. 30.
    Fujikawa T, Soya H, Tamashiro KL, Sakai RR, McEwen BS, Nakai N, Ogata M, Suzuki I, Nakashima K. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat. Endocrinology. 2004;145:2006–13.CrossRefPubMedGoogle Scholar
  31. 31.
    Fujikawa T, Soya H, Yoshizato H, Sakaguchi K, Doh-Ura K, Tanaka M, Nakashima K. Restraint stress enhances the gene expression of prolactin receptor long form at the choroid plexus. Endocrinology. 1995;136:5608–13.PubMedGoogle Scholar
  32. 32.
    Galdiero M, Pivonello R, Grasso LF, Cozzolino A, Colao A. Growth hormone, prolactin, and sexuality. J Endocrinol Invest. 2012;35:782–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol. 2008;23(7):571–85. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Graeff FG, Guimaraes FS, DeAndrade TG, Deakin JF. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav. 1996;54:129–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Grattan DR, Kokay IC. Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol. 2008;20(6):752–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, Tseng GC, Lewis DA, Sibille E. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17:1130–42.CrossRefPubMedGoogle Scholar
  37. 37.
    Herzog CJ, Czéh B, Corbach S, Wuttke W, Schulte-Herbrüggen O, Hellweg R, Flügge G, Fuchs E. Chronic social instability stress in female rats: a potential animal model for female depression. Neuroscience. 2009;159:982–92.CrossRefPubMedGoogle Scholar
  38. 38.
    Ignacak A, Kasztelnik M, Sliwa T, Korbut RA, Rajda K, Guzik TJ. Prolactin—not only lactotrophin. A “new” view of the “old” hormone. J Physiol Pharmacol. 2012;63:435–43. Review.PubMedGoogle Scholar
  39. 39.
    Izquierdo-Claros RM, Boyano-Adanez MC, Larsson C, Gustavsson L, Arilla E. Acute effects of D1- and D2-receptor agonist and antagonist drugs on somatostatin binding, inhibition of adenylyl cyclase activity and accumulation of inositol 1,4,5-trisphosphate in the rat striatum. Mol Brain Res. 1997;47(1–2):99–107.CrossRefPubMedGoogle Scholar
  40. 40.
    Jaroenporn S, Nagaoka K, Ohta R, Watanabe G, Taya K. Direct effects of prolactin on adrenal steroid release in male Hatano high-avoidance (HAA) rats may be mediated through Janus kinase 2 (Jak2) activity. J Reprod Dev. 2007;53:887–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Kessler RC. Epidemiology of women and depression. J Affect Disord. 2003;74:5–13.CrossRefPubMedGoogle Scholar
  42. 42.
    Kirby LG, Allen AR, Lucki I. Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res. 1995;682:189–96.CrossRefPubMedGoogle Scholar
  43. 43.
    Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides. 2013;47:401–19.CrossRefPubMedGoogle Scholar
  44. 44.
    Kreiss DS, Lucki I. Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther. 1994;269:1268–79.PubMedGoogle Scholar
  45. 45.
    Kuśmider M, Faron Górecka A, Żurawek D, Gaska M, Gruca P, Papp M, Dziedzicka-Wasylewska M. Alterations in somatostatin binding sites in brains of rats subjected to chronic mild stress. Eur Neuropsychopharmacol. 2011;21(2):S132.CrossRefGoogle Scholar
  46. 46.
    Leatherman ME, Ekstrom RD, Corrigan M, Carson SW, Mason G, Golden RN. Central serotonergic changes following antidepressant treatment: a neuroendocrine assessment. Psychopharmacol Bull. 1993;29:149–54.PubMedGoogle Scholar
  47. 47.
    Lennartsson AK, Jonsdottir IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011;36:1530–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Lesch KP, Mayer S, Disselkamp-Tietze J, Hoh A, Wiesmann M, Osterheider M, Schulte HM. 5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced ACTH and cortisol secretion in patients and controls. Biol Psychiatry. 1990;28:620–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Malone KM, Thase ME, Mieczkowski T, Myers JE, Stull SD, Cooper TB, Mann JJ. Fenfluramine challenge test as a predictor of outcome in major depression. Psychopharmacol Bull. 1993;29:155–61.PubMedGoogle Scholar
  50. 50.
    Martí O, Armario A. Anterior pituitary response to stress: time-related changes and adaptation. Int J Dev Neurosci. 1998;16:241–60.CrossRefPubMedGoogle Scholar
  51. 51.
    Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus–from silver stainings to a role in depression. Brain Res Rev. 2007;55:329–42.CrossRefPubMedGoogle Scholar
  52. 52.
    Molchan SE, Lawlor BA, Hill JL, Martinez RA, Davis CL, Mellow AM, Rubinow DR, Sunderland T. CSF monoamine metabolites and somatostatin in Alzheimer’s disease and major depression. Biol Psychiatry. 1991;29(11):1110–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Murgatroyd CA, Nephew BC. Effects of early life social stress on maternal behavior and neuroendocrinology. Psychoneuroendocrinology. 2013;38:219–28.CrossRefPubMedGoogle Scholar
  54. 54.
    Nanda SA, Qi C, Roseboom PH, Kalin NH. Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes Brain Behav. 2008;7(6):639–48.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nilsson A, Stroth N, Zhang X, Qi H, Fälth M, Sköld K, Hoyer D, Andrén PE, Svenningsson P. Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects. Neuropharmacology. 2012;62(1):347–57.CrossRefPubMedGoogle Scholar
  56. 56.
    Noble R. Depression in women. Metab Clin Exp. 2005;54:49–52.CrossRefPubMedGoogle Scholar
  57. 57.
    Pallis E, Thermos K, Spyraki C. Chronic desipramine treatment selectively potentiates somatostatin-induced dopamine release in the nucleus accumbens. Eur J Neurosci. 2001;14(4):763–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Pallis E, Vasilaki A, Fehlmann D, Kastellakis A, Hoyer D, Spyraki C, Thermos K. Antidepressants influence somatostatin levels and receptor pharmacology in brain. Neuropsychopharmacology. 2009;34(4):952–63.CrossRefPubMedGoogle Scholar
  59. 59.
    Polkowska J, Wankowska M. Effects of maternal deprivation on the somatotrophic axis and neuropeptide Y in the hypothalamus and pituitary in female lambs. The histomorphometric study. Folia Histochem Cytobiol. 2010;48(2):299–305.CrossRefPubMedGoogle Scholar
  60. 60.
    Porter RJ, Mulder RT, Joyce PR. Baseline prolactin and L-tryptophan availability predict response to antidepressant treatment in major depression. Psychopharmacology (Berl). 2003;165:216–21.CrossRefGoogle Scholar
  61. 61.
    Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000;288(5463):154–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Rodriguez-Sanchez MN, Puebla L, Lopez-Sanudo S, Rodriguez-Martin E, Martin-Espinosa A, Rodriguez-Pena MS, Juarranz MG, Arilla E. Dopamine enhances somatostatin receptor-mediated inhibition of adenylate cyclase in rat striatum and hippocampus. J Neurosci Res. 1997;48(3):238–48.CrossRefPubMedGoogle Scholar
  63. 63.
    Roky R, Obál Jr F, Valatx JL, Bredow S, Fang J, Pagano LP, Krueger JM. Prolactin and rapid eye movement sleep regulation. Sleep. 1995;18:536–42.PubMedGoogle Scholar
  64. 64.
    Roky R, Valatx JL, Jouvet M. Effect of prolactin on the sleep-wake cycle in the rat. Neurosci Lett. 1993;156:117–20.CrossRefPubMedGoogle Scholar
  65. 65.
    Rubinow DR. Cerebrospinal fluid somatostatin and psychiatric illness. Biol Psychiatry. 1986;21(4):341–65.CrossRefPubMedGoogle Scholar
  66. 66.
    Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59.CrossRefPubMedGoogle Scholar
  67. 67.
    Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.CrossRefPubMedGoogle Scholar
  68. 68.
    Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ. Brain serotonin 1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry. 2000;57:174–80.CrossRefPubMedGoogle Scholar
  69. 69.
    Seggie JA, Brown GM. Stress response patterns of plasma corticosterone, prolactin, and growth hormone in the rat, following handling or exposure to novel environment. Can J Physiol Pharmacol. 1975;53:629–37.CrossRefPubMedGoogle Scholar
  70. 70.
    Sibille E, Morris HM, Kota RS, Lewis DA. GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol. 2011;14:721–34.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Stein DJ. Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry. CNS Spectr. 2008;13:561–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Szafran K, Łukasiewicz S, Faron-Górecka A, Kolasa M, Kuśmider M, Solich J, Dziedzicka-Wasylewska M. Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors fluorescence in vitro studies. Pharmacol Rep. 2012;64(5):1253–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Szafran K, Faron-Górecka A, Kolasa M, Kuśmider M, Solich J, Zurawek D, Dziedzicka-Wasylewska M. Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: a focus on depression. Pharmacol Rep. 2013;65(6):1498–505.CrossRefPubMedGoogle Scholar
  74. 74.
    Tabata H, Kobayashi M, Ikeda JH, Nakao N, Saito TR, Tanaka M. Characterization of multiple first exons in murine prolactin receptor gene and the effect of prolactin on their expression in the choroid plexus. Mol Endocrinol. 2012;48:169–76.CrossRefGoogle Scholar
  75. 75.
    Thermos K, Radke J, Kastellakis A, Anagnostakis Y, Spyraki C. Dopamine-somatostatin interactions in the rat striatum: an in vivo microdialysis study. Synapse. 1996;22(3):209–16.CrossRefPubMedGoogle Scholar
  76. 76.
    Torner L, Neumann ID. The brain prolactin system: involvement in stress response adaptations in lactation. Stress. 2002;5:249–57. Review.CrossRefPubMedGoogle Scholar
  77. 77.
    Torner L, Karg S, Blume A, Kandasamy M, Kuhn HG, Winkler J, Aigner L, Neumann ID. Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci. 2009;29(6):1826–33.CrossRefPubMedGoogle Scholar
  78. 78.
    Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID. Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci. 2001;21:3207–14.PubMedGoogle Scholar
  79. 79.
    Tripp A, Kota RS, Lewis DA, Sibille E. Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2011;42(1):116–24.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Vega C, Moreno-Carranza B, Zamorano M, Quintanar-Stéphano A, Méndez I, Thebault S, Martínez de la Escalera G, Clapp C. Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol. 2010;299:1701–8.CrossRefGoogle Scholar
  81. 81.
    Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun Rev. 2002;1(6):360–4. Review.CrossRefPubMedGoogle Scholar
  82. 82.
    Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J. Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol. 2008;286:75–87.CrossRefPubMedGoogle Scholar
  83. 83.
    Viollet C, Vaillend C, Videau C, Bluet-Pajot MT, Ungerer A, L’Héritier A, Kopp C, Potier B, Billard J, Schaeffer J, Smith RG, Rohrer SP, Wilkinson H, Zheng H, Epelbaum J. Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci. 2000;12(10):3761–70.CrossRefPubMedGoogle Scholar
  84. 84.
    Walker TL, Vukovic J, Koudijs MM, Blackmore DG, Mackay EW, Sykes AM, Overall RW, Hamlin AS, Bartlett PF. Prolactin stimulates precursor cells in the adult mouse hippocampus. PLoS One. 2012;7(9):e44371.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Walsh RJ, Slaby FJ, Posner BI. A receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid. Endocrinology. 1987;120:1846–50.CrossRefPubMedGoogle Scholar
  86. 86.
    Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in major depression: a review. Int J Neurosci. 2010;120:455–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of PharmacologyInstitute of Pharmacology Polish Academy of SciencesKrakówPoland

Personalised recommendations