Skip to main content

Antidepressants Modulate Microglia Beyond the Neurotransmitters Doctrine of Mood Disorders

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Mood disorders have long and dominantly been regarded to be induced by disturbances of neuronal networks including synapses and neurotransmitters. Thus, the effects of psychotropic drugs including antidepressants have long been understood to modulate synaptic regulation via receptors and transporters of neurotransmitters such as serotonin. Recently, microglia, immune cells in the brain, have been indicated to have positive links to psychiatric disorders. Human imaging studies have shown microglial activation in the brain of patients with neuropsychiatric disorders such as depression and schizophrenia especially suicide victims. Animal models of psychiatric disorders including depression models have revealed the underlying microglial pathologies. In addition, various psychotropic drugs have been suggested to have direct effects on microglia. We herein introduce up-to-date knowledge of the effects of antidepressants on microglial modulation. In addition, we summarize recent findings of the interaction between microglia and neurotransmitters such as serotonin and melatonin. Finally, we propose the possibility that modulating microglia may be a key target in the treatment of various psychiatric disorders. Further translational investigations should be conducted to clarify this perspective, using rodent in vivo models, and novel translational research techniques such as directly induced microglia-like (iMG) cells from human peripheral blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acarin L, Peluffo H, Gonzalez B, Castellano B. Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain. J Neurosci Res. 2002;68:745–54.

    Article  CAS  PubMed  Google Scholar 

  2. Ahuja N, Carroll BT. Possible anti-catatonic effects of minocycline in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:968–9.

    Article  CAS  PubMed  Google Scholar 

  3. Anisman H. Cascading effects of stressors and inflammatory immune system activation: implications for major depressive disorder. J Psychiatry Neurosci. 2009;34:4–20.

    PubMed  PubMed Central  Google Scholar 

  4. Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma. 2006;23:318–34.

    Article  PubMed  Google Scholar 

  5. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–51.

    Article  CAS  PubMed  Google Scholar 

  6. Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S. The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:42–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009;46:94–102.

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhry IB, Hallak J, Husain N, Minhas FA, Stirling J, Richardson P, Dursun S, Dunn G, Deakin B. Minocycline benefits negative symptoms in early schizophrenia; a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol. 2012;26:1185.

    Article  CAS  PubMed  Google Scholar 

  9. Chaves C, de Marque CR, Wichert-Ana L, Maia-de-Oliveira JP, Itikawa EN, Crippa JA, Zuardi AW, Todd KG, Baker GB, Dursun SM, Hallak JE. Functional neuroimaging of minocycline’s effect in a patient with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:550–2.

    Article  CAS  PubMed  Google Scholar 

  10. Chiang RP, Huang CT, Tsai YJ. Melatonin reduces median nerve injury-induced mechanical hypersensitivity via inhibition of microglial p38 mitogen-activated protein kinase activation in rat cuneate nucleus. J Pineal Res. 2013;54:232–44.

    Article  CAS  PubMed  Google Scholar 

  11. Choi SH, Joe EH, Kim SU, Jin BK. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J Neurosci. 2003;23:5877–86.

    CAS  PubMed  Google Scholar 

  12. Chung SY, Han SH. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J Pineal Res. 2003;34:95–102.

    Article  CAS  PubMed  Google Scholar 

  13. Defaux A, Zurich MG, Honegger P, Monnet-Tschudi F. Minocycline promotes remyelination in aggregating rat brain cell cultures after interferon-gamma plus lipopolysaccharide-induced demyelination. Neuroscience. 2011;187:84–92.

    Article  CAS  PubMed  Google Scholar 

  14. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484:105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and citalopram decrease microglial release of glutamate and D-serine to promote cortical neuronal viability following ischemic insult. Mol Cell Neurosci. 2013;56:365–74.

    Article  CAS  PubMed  Google Scholar 

  17. Ding K, Wang H, Xu J, Lu X, Zhang L, Zhu L. Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochem Int. 2014;76:23–31.

    Article  CAS  PubMed  Google Scholar 

  18. Domercq M, Matute C. Neuroprotection by tetracyclines. Trends Pharmacol Sci. 2004;25:609–12.

    Article  CAS  PubMed  Google Scholar 

  19. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7.

    Article  PubMed  Google Scholar 

  20. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2009;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  21. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62:343–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:11–6.

    Article  CAS  PubMed  Google Scholar 

  23. Fujita Y, Ishima T, Kunitachi S, Hagiwara H, Zhang L, Iyo M, Hashimoto K. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:336–9.

    Article  CAS  PubMed  Google Scholar 

  24. Glebov K, Lochner M, Jabs R, Lau T, Merkel O, Schloss P, Steinhauser C, Walter J. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 2015;63:626–34.

    Article  PubMed  Google Scholar 

  25. Graeber MB. Changing face of microglia. Science. 2010;330:783–8.

    Article  CAS  PubMed  Google Scholar 

  26. Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol. 2010;119:89–105.

    Article  PubMed  Google Scholar 

  27. Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL, Kanba S. Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol. 2007;206:33–42.

    Article  CAS  PubMed  Google Scholar 

  28. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther. 2000;293:417–25.

    CAS  PubMed  Google Scholar 

  30. Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, Gotoh L, Yonaha M, Ueda T, Hashioka S, Kanba S. Inhibitory effects of SSRIs on IFN-gamma induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:1306–16.

    Article  CAS  PubMed  Google Scholar 

  31. Hurlock EC. Interferons: potential roles in affect. Med Hypotheses. 2001;56:558–66.

    Article  CAS  PubMed  Google Scholar 

  32. Hwang J, Zheng LT, Ock J, Lee MG, Kim SH, Lee HW, Lee WH, Park HC, Suk K. Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology. 2008;55:826–34.

    Article  CAS  PubMed  Google Scholar 

  33. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, Kim J, Kim EH. Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett. 2005;380:26–31.

    Article  CAS  PubMed  Google Scholar 

  34. Juckel G, Manitz MP, Brune M, Friebe A, Heneka MT, Wolf RJ. Microglial activation in a neuroinflammational animal model of schizophrenia – a pilot study. Schizophr Res. 2011;131:96–100.

    Article  PubMed  Google Scholar 

  35. Kato T, Monji A, Hashioka S, Kanba S. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res. 2007;92:108–15.

    Article  PubMed  Google Scholar 

  36. Kato T, Mizoguchi Y, Monji A, Horikawa H, Suzuki SO, Seki Y, Iwaki T, Hashioka S, Kanba S. Inhibitory effects of aripiprazole on interferon-gamma-induced microglial activation via intracellular Ca2+ regulation in vitro. J Neurochem. 2008;106:815–25.

    Article  CAS  PubMed  Google Scholar 

  37. Kato TA, Watabe M, Tsuboi S, Ishikawa K, Hashiya K, Monji A, Utsumi H, Kanba S. Minocycline modulates human social decision-making: possible impact of microglia on personality-oriented social behaviors. PLoS One. 2012;7:e40461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato TA, Yamauchi Y, Horikawa H, Monji A, Mizoguchi Y, Seki Y, Hayakawa K, Utsumi H, Kanba S. Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry. Curr Med Chem. 2013;20:331–44.

    CAS  PubMed  Google Scholar 

  39. Kato TA, Monji A, Yasukawa K, Mizoguchi Y, Horikawa H, Seki Y, Hashioka S, Han YH, Kasai M, Sonoda N, Hirata E, Maeda Y, Inoguchi T, Utsumi H, Kanba S. Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)-stimulated microglia in vitro: implication for antioxidative psychotropic actions via microglia. Schizophr Res. 2011;129:172–82.

    Article  PubMed  Google Scholar 

  40. Kaur C, Ling EA. Effects of melatonin on macrophages/microglia in postnatal rat brain. J Pineal Res. 1999;26:158–68.

    Article  CAS  PubMed  Google Scholar 

  41. Kelly DL, Vyas G, Richardson CM, Koola M, McMahon RP, Buchanan RW, Wehring HJ. Adjunct minocycline to clozapine treated patients with persistent schizophrenia symptoms. Schizophr Res. 2011;133:257–8.

    Article  PubMed  Google Scholar 

  42. Kelso ML, Scheff NN, Scheff SW, Pauly JR. Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neurosci Lett. 2011;488:60–4.

    Article  CAS  PubMed  Google Scholar 

  43. Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196:168–79.

    Article  CAS  PubMed  Google Scholar 

  44. Krabbe G, Matyash V, Pannasch U, Mamer L, Boddeke HW, Kettenmann H. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity. Brain Behav Immun. 2012;26:419–28.

    Article  CAS  PubMed  Google Scholar 

  45. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.

    Article  CAS  PubMed  Google Scholar 

  46. Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res. 2007;42:297–309.

    Article  CAS  PubMed  Google Scholar 

  47. Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G, Fennig S, Treves I, Kron S. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry. 2010;71:138–49.

    Article  CAS  PubMed  Google Scholar 

  48. Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, Ieda M, Tsuchie K, Taki M, Ishihara K, Tanra AJ, Horiguchi J. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation. 2012;9:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res. 2009;87:1037–45.

    Article  CAS  PubMed  Google Scholar 

  50. Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A. Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology. 2011;61:592–9.

    Article  CAS  PubMed  Google Scholar 

  51. Liu RP, Zou M, Wang JY, Zhu JJ, Lai JM, Zhou LL, Chen SF, Zhang X, Zhu JH. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation. 2014;11:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Min KJ, Jang JH, Kwon TK. Inhibitory effects of melatonin on the lipopolysaccharide-induced CC chemokine expression in BV2 murine microglial cells are mediated by suppression of Akt-induced NF-κB and STAT/GAS activity. J Pineal Res. 2012;52:296–304.

    Article  CAS  PubMed  Google Scholar 

  54. Miyaoka T. Clinical potential of minocycline for schizophrenia. CNS Neurol Disord Drug Targets. 2008;7:376–81.

    Article  CAS  PubMed  Google Scholar 

  55. Miyaoka T, Yasukawa R, Yasuda H, Hayashida M, Inagaki T, Horiguchi J. Possible antipsychotic effects of minocycline in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:304–7.

    Article  CAS  PubMed  Google Scholar 

  56. Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, Tsuchie K, Taki M, Ishihara K, Araki T, Horiguchi J. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37:222–6.

    Article  CAS  PubMed  Google Scholar 

  57. Mizoguchi H, Takuma K, Fukakusa A, Ito Y, Nakatani A, Ibi D, Kim HC, Yamada K. Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology (Berl). 2008;196:233–41.

    Article  CAS  Google Scholar 

  58. Monji A, Kato T, Kanba S. Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci. 2009;63:257–65.

    Article  CAS  PubMed  Google Scholar 

  59. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115–21.

    Article  CAS  PubMed  Google Scholar 

  60. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010;68:368–76.

    Article  PubMed  Google Scholar 

  61. Muller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12:988–1000.

    Article  CAS  PubMed  Google Scholar 

  62. Muller N, Schwarz MJ. COX-2 inhibition in schizophrenia and major depression. Curr Pharm Des. 2008;14:1452–65.

    Article  PubMed  Google Scholar 

  63. Muller N, Myint AM, Schwarz MJ. The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders – relation to drug treatment. Dialogues Clin Neurosci. 2009;11:319–32.

    PubMed  PubMed Central  Google Scholar 

  64. Muller N, Strassnig M, Schwarz MJ, Ulmschneider M, Riedel M. COX-2 inhibitors as adjunctive therapy in schizophrenia. Expert Opin Investig Drugs. 2004;13:1033–44.

    Article  PubMed  Google Scholar 

  65. Muller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Moller HJ, Gruber R, Riedel M. COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci. 2004;254:14–22.

    Article  PubMed  Google Scholar 

  66. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14:511–22.

    Article  CAS  PubMed  Google Scholar 

  67. Obuchowicz E, Kowalski J, Labuzek K, Krysiak R, Pendzich J, Herman ZS. Amitriptyline and nortriptyline inhibit interleukin-1 release by rat mixed glial and microglial cell cultures. Int J Neuropsychopharmacol. 2006;9:27–35.

    Article  CAS  PubMed  Google Scholar 

  68. Ohgidani M, Kato TA, Kanba S. Introducing directly induced microglia-like (iMG) cells from fresh human monocytes: a novel translational research tool for psychiatric disorders. Front Cell Neurosci. 2015;9:184.

    Google Scholar 

  69. Ohgidani M, Kato TA, Setoyama D, Sagata N, Hashimoto R, Shigenobu K, Yoshida T, Hayakawa K, Shimokawa N, Miura D, Utsumi H, Kanba S. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci Rep. 2014;4:4957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olivier P, Fontaine RH, Loron G, Van Steenwinckel J, Biran V, Massonneau V, Kaindl A, Dalous J, Charriaut-Marlangue C, Aigrot MS, Pansiot J, Verney C, Gressens P, Baud O. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. Plos One. 2009;4:e7128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peroutka SJ, Snyder SH. Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science. 1980;210:88–90.

    Article  CAS  PubMed  Google Scholar 

  72. Plane JM, Shen Y, Pleasure DE, Deng W. Prospects for minocycline neuroprotection. Arch Neurol. 2010;67:1442–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007;30:527–35.

    Article  CAS  PubMed  Google Scholar 

  74. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  75. Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, Ortiz GG, AcuñaCastroviejo D. A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res. 1995;18:1–11.

    Article  CAS  PubMed  Google Scholar 

  76. Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:201–17.

    Article  CAS  PubMed  Google Scholar 

  77. Schwarz MJ, Muller N, Riedel M, Ackenheil M. The Th2-hypothesis of schizophrenia: a strategy to identify a subgroup of schizophrenia caused by immune mechanisms. Med Hypotheses. 2001;56:483–6.

    Article  CAS  PubMed  Google Scholar 

  78. Schwarz MJ, Chiang S, Muller N, Ackenheil M. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun. 2001;15:340–70.

    Article  CAS  PubMed  Google Scholar 

  79. Seki Y, Kato TA, Monji A, Mizoguchi Y, Horikawa H, Sato-Kasai M, Yoshiga D, Kanba S. Pretreatment of aripiprazole and minocycline, but not haloperidol, suppresses oligodendrocyte damage from interferon-gamma-stimulated microglia in co-culture model. Schizophr Res. 2013;151:20–8.

    Article  PubMed  Google Scholar 

  80. Shafer LL, McNulty JA, Young MR. Assessment of melatonin’s ability to regulate cytokine production by macrophage and microglia cell types. J Neuroimmunol. 2001;120:84–93.

    Article  CAS  PubMed  Google Scholar 

  81. Smith WL, DeWitt DL. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs. Semin Nephrol. 1995;15:179–94.

    CAS  PubMed  Google Scholar 

  82. Smith WL, Marnett LJ, DeWitt DL. Prostaglandin and thromboxane biosynthesis. Pharmacol Ther. 1991;49:153–79.

    Article  CAS  PubMed  Google Scholar 

  83. Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG, Bogerts B. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol. 2006;112:305–16.

    Article  CAS  PubMed  Google Scholar 

  84. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG, Bogerts B. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.

    Article  PubMed  Google Scholar 

  85. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist. 2005;11:308–22.

    Article  CAS  PubMed  Google Scholar 

  86. Su F, Yi H, Xu L, Zhang Z. Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience. 2015;294:60–8.

    Article  CAS  PubMed  Google Scholar 

  87. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol. 2010;13:943–50.

    Article  CAS  PubMed  Google Scholar 

  88. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, Allman JM. Microglia in the cerebral cortex in autism. J Autism Dev Disord. 2012;42:2569.

    Article  PubMed  Google Scholar 

  89. Tocharus J, Chongthammakun S, Govitrapong P. Melatonin inhibits amphetamine-induced nitric oxide synthase mRNA overexpression in microglial cell lines. Neurosci Lett. 2008;439:134–7.

    Article  CAS  PubMed  Google Scholar 

  90. Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res. 2010;48:347–52.

    Article  CAS  PubMed  Google Scholar 

  91. Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun. 2012;26:469–79.

    Article  CAS  PubMed  Google Scholar 

  92. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64:820–2.

    Article  PubMed  Google Scholar 

  93. Vollmar P, Haghikia A, Dermietzel R, Faustmann PM. Venlafaxine exhibits an anti-inflammatory effect in an inflammatory co-culture model. Int J Neuropsychopharmacol. 2008;11:111–7.

    Article  CAS  PubMed  Google Scholar 

  94. Watabe M, Kato TA, Monji A, Horikawa H, Kanba S. Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction? Psychopharmacology (Berl). 2012;220:551–7.

    Article  CAS  Google Scholar 

  95. Watabe M, Kato TA, Tsuboi S, Ishikawa K, Hashiya K, Monji A, Utsumi H, Kanba S. Minocycline, a microglial inhibitor, reduces ‘honey trap’ risk in human economic exchange. Sci Rep. 2013;3:1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wong CS, Jow GM, Kaizaki A, Fan LW, Tien LT. Melatonin ameliorates brain injury induced by systemic lipopolysaccharide in neonatal rats. Neuroscience. 2014;267:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res. 2011;50:159–70.

    CAS  PubMed  Google Scholar 

  98. Yan L, Liu S, Wang C, Wang F, Song Y, Yan N, Xi S, Liu Z, Sun G. JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediat Inflamm. 2013;2013:1.

    Google Scholar 

  99. Zhang L, Shirayama Y, Iyo M, Hashimoto K. Minocycline attenuates hyperlocomotion and prepulse inhibition deficits in mice after administration of the NMDA receptor antagonist dizocilpine. Neuropsychopharmacology. 2007;32:2004–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research on (1) the Japan Society for the Promotion of Science, KAKENHI (to TAK (24650227&26713039) and SK (25293252)); (2) Innovative Areas “Glia Assembly” of The Ministry of Education, Culture, Sports, Science, and Technology, Japan (25117011 to SK); (3) the Japan Agency for Medical Research and Development (AMED), the Japanese Ministry of Health, Labour, and Welfare (H27 – Seishin-Syogai Taisaku-Jigyo to SK); (4) the Young Principal Investigators’ Research Grant of Innovation Center for Medical Redox Navigation, Kyushu University (to TAK); (5) the Takeda Science Foundation, Medical Research (to TAK); and (6) the SENSHIN Medical Research Foundation (to TAK, MO & SK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro A. Kato MD, PhD .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

All authors declare that they have no financial conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Ohgidani, M., Kato, T.A., Mizoguchi, Y., Horikawa, H., Monji, A., Kanba, S. (2016). Antidepressants Modulate Microglia Beyond the Neurotransmitters Doctrine of Mood Disorders. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_36

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics