Skip to main content

Genetic Polymorphisms of Cytochrome P450 and Antidepressants

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Following the reviews done in the mid-1990s by one of the authors (WWW), current chapter authors here review the studies on P450 isozymes on antidepressant metabolism.

After explaining background on pharmacogenetics, the authors have reviewed all published papers on antidepressants related to cytochrome P450 studies by the categories of isozymes, namely, CYPs 2D6, 2C19, 2C9, 1A2, 3A4/3A5, and 2B6. The authors have found that the research in the field of antidepressant pharmacogenetics has been active. More study data including those from Asian counties (especially Japan, Korea, and Taiwan) on genetic polymorphisms of cytochrome P450 and antidepressants have been added greatly in the recent 20 years. There is still a long way to go for incorporating knowledge on pharmacogenetics into a routine daily clinical practice. But the authors are optimistic to look forward to implementing pharmacogenomics in daily practice in the near future to improve the antidepressant treatment outcome for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADR:

Adverse drug reaction

Anti-TB:

Anti-tuberculosis

CYP 1A2:

Cytochrome P450 1A2

CYP 2B6:

Cytochrome P450 2B6

CYP 2C19:

Cytochrome P450 2C19

CYP 2C9:

Cytochrome P450 2C9

CYP 2D6:

Cytochrome P450 2D6

CYP 3A4:

Cytochrome P450 3A4

CYP 3A5:

Cytochrome P450 3A4

CYP450:

Cytochrome P450

EM:

Extensive metabolizer

FDA of the US:

Food and Drug Administration of the United States

IM:

Intermediate metabolizer

PM:

Poor metabolizer

SSRI:

Selective serotonin reuptake inhibitor

TCA:

Tricyclic antidepressant

UM:

Ultrarapid metabolizer

References

  1. Shen WW, Lin KM. Cytochrome P-450 monooxygenases and interactions of psychotropic drugs. Int J Psychiatry Med. 1991;21:47–56.

    Article  CAS  PubMed  Google Scholar 

  2. Shen WW. Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med. 1995;25:277–90.

    Article  CAS  PubMed  Google Scholar 

  3. Shen WW. The metabolism of psychoactive drugs: a review of enzymatic biotransformation and inhibition. Biol Psychiatry. 1997;41:814–26.

    Article  CAS  PubMed  Google Scholar 

  4. López-Muñoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G. History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry. 2005;17:113–35.

    Article  PubMed  Google Scholar 

  5. Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348:529–37.

    Article  PubMed  Google Scholar 

  6. Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med. 2006;57:119–37.

    Article  CAS  PubMed  Google Scholar 

  7. Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25:193–200.

    Article  CAS  PubMed  Google Scholar 

  8. Chao KC, Lu ML, Shen WW. Use of carbamazepine and lamotrigine in a Taiwanese diabetic patient with bipolar disorder. Psychiatry Clin Neurosci. 2012;66:538–9.

    Article  PubMed  Google Scholar 

  9. Phimister EG, Feero WG, Guttmacher AE. Realizing genomic medicine. N Engl J Med. 2012;366:757–9.

    Article  CAS  PubMed  Google Scholar 

  10. Guengerich EP. Cytochrome P450s and other enzymes in drug metabolism and toxicity. Am Assoc Pharm Sci. 2006;8:E101–11.

    CAS  Google Scholar 

  11. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab. 2002;3:481–90.

    Article  CAS  PubMed  Google Scholar 

  12. Blanco JG, Harrison PL, Evans WE, Relling MV. Human cytochrome P450 maximal activities in pediatric versus adult liver. Drug Metab Dispos. 2000;28:379–82.

    CAS  PubMed  Google Scholar 

  13. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009;48:689–723.

    Article  CAS  PubMed  Google Scholar 

  14. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13.

    Article  CAS  PubMed  Google Scholar 

  15. Dalén P, Dahl ML, Bernal Ruiz ML, Nordin J, Bertilsson L. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther. 1998;63:444–52.

    Article  PubMed  Google Scholar 

  16. Sachse C, Brockmöller J, Bauer S, Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet. 1997;60:284–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shams ME, Arneth B, Hiemke C, Dragicevic A, Müller MJ, Kaiser R, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther. 2006;31:493–502.

    Article  CAS  PubMed  Google Scholar 

  18. Mulder H, Herder A, Wilmink FW, Tamminga WJ, Belitser SV, Egberts AC. The impact of cytochrome P450-2D6 genotype on the use and interpretation of therapeutic drug monitoring in long-stay patients treated with antidepressant and antipsychotic drugs in daily psychiatric practice. Pharmacoepidemiol Drug Saf. 2006;15:107–14.

    Article  CAS  PubMed  Google Scholar 

  19. Lessard E, Yessine MA, Hamelin BA, O’Hara G, LeBlanc J, Turgeon J. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics. 1999;9:435–43.

    Article  CAS  PubMed  Google Scholar 

  20. D’Empaire I, Guico-Pabia CJ, Preskorn SH. Antidepressant treatment and altered CYP2D6 activity: are pharmacokinetic variations clinically relevant? J Psychiatr Pract. 2011;17:330–9.

    Article  PubMed  Google Scholar 

  21. Chen S, Chou WH, Blouin RA, Mao Z, Humphries LL, Meek QC, et al. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther. 1996;60:522–34.

    Article  CAS  PubMed  Google Scholar 

  22. Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol. 2000;20:246–51.

    Article  CAS  PubMed  Google Scholar 

  23. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003;59:303–12.

    Article  CAS  PubMed  Google Scholar 

  24. Kawanishi C, Lundgren S, Agren H, Bertilsson L. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse: a pilot study. Eur J Clin Pharmacol. 2004;59:803–7.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3:229–43.

    Article  CAS  PubMed  Google Scholar 

  26. Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther. 1996;278:441–6.

    CAS  PubMed  Google Scholar 

  27. Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjöqvist F. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther. 1995;274:516–20.

    CAS  PubMed  Google Scholar 

  28. Yoon YR, Cha IJ, Shon JH, Kim KA, Cha YN, Jang IJ, et al. Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects. Clin Pharmacol Ther. 2000;67:567–76.

    Article  CAS  PubMed  Google Scholar 

  29. Ueda M, Hirokane G, Morita S, Okawa M, Watanabe T, Akiyama K, et al. The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:486–91.

    Article  CAS  PubMed  Google Scholar 

  30. Sawamura K, Suzuki Y, Someya T. Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol. 2004;60:553–7.

    Article  CAS  PubMed  Google Scholar 

  31. Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteux G. Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit. 2003;25:738–42.

    Article  CAS  PubMed  Google Scholar 

  32. Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K, et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol. 1999;47:450–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nichols AI, Lobello K, Guico-Pabia CJ, Paul J, Preskorn SH. Venlafaxine metabolism as a marker of cytochrome P450 enzyme 2D6 metabolizer status. J Clin Psychopharmacol. 2009;29:383–6.

    Article  CAS  PubMed  Google Scholar 

  34. LLerena A, Dorado P, Berecz R, González AP, Peñas-LLedó EM. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol. 2004;59:869–73.

    Article  CAS  PubMed  Google Scholar 

  35. de Vos A, van der Weide J, Loovers HM. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J. 2011;11:359–67.

    Article  CAS  PubMed  Google Scholar 

  36. Fudio S, Borobia AM, Piñana E, Ramírez E, Tabarés B, Guerra P, et al. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol. 2010;626:200–4.

    Article  CAS  PubMed  Google Scholar 

  37. Lind AB, Reis M, Bengtsson F, Jonzier-Perey M, Powell Golay K, Ahlner J, et al. Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokinet. 2009;48:63–70.

    Article  CAS  PubMed  Google Scholar 

  38. Morita S, Shimoda K, Someya T, Yoshimura Y, Kamijima K, Kato N. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol. 2000;20:141–9.

    Article  CAS  PubMed  Google Scholar 

  39. Schenk PW, van Fessem MA, Verploegh-Van Rij S, Mathot RA, van Gelder T, Vulto AG, et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry. 2008;13:597–605.

    Article  CAS  PubMed  Google Scholar 

  40. Kirchheiner J, Sasse J, Meineke I, Roots I, Brockmöller J. Trimipramine pharmacokinetics after intravenous and oral administration in carriers of CYP2D6 genotypes predicting poor, extensive and ultrahigh activity. Pharmacogenetics. 2003;13:721–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ozdemir V, Tyndale RF, Reed K, Herrmann N, Sellers EM, Kalow W, et al. Paroxetine steady-state plasma concentration in relation to CYP2D6 genotype in extensive metabolizers. J Clin Psychopharmacol. 1999;19:472–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G, et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit. 2008;30:474–82.

    CAS  PubMed  Google Scholar 

  43. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442–73.

    Article  CAS  PubMed  Google Scholar 

  44. Steimer W, Zöpf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J, et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem. 2005;51:376–85.

    Article  CAS  PubMed  Google Scholar 

  45. Mulder H, Wilmink FW, Beumer TL, Tamminga WJ, Jedema JN, Egberts AC. The association between cytochrome P450 2D6 genotype and prescription patterns of antipsychotic and antidepressant drugs in hospitalized psychiatric patients: a retrospective follow-up study. J Clin Psychopharmacol. 2005;25:188–91.

    Article  PubMed  Google Scholar 

  46. Bijl MJ, Visser LE, Hofman A, Vulto AG, van Gelder T, Stricker BH. Influence of the CYP2D6*4 polymorphism on dose, switching and discontinuation of antidepressants. Br J Clin Pharmacol. 2008;65:558–64.

    Article  CAS  PubMed  Google Scholar 

  47. Murphy Jr GM, Kremer C, Rodrigues HE, Schatzberg AF. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry. 2003;160:1830–5.

    Article  PubMed  Google Scholar 

  48. Rudberg I, Hermann M, Refsum H, Molden E. Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol. 2008;64:1181–8.

    Article  CAS  PubMed  Google Scholar 

  49. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther. 2008;83:322–7.

    Article  CAS  PubMed  Google Scholar 

  50. Yin OQ, Wing YK, Cheung Y, Wang ZJ, Lam SL, Chiu HF, et al. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol. 2006;26:367–72.

    Article  CAS  PubMed  Google Scholar 

  51. Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41:913–58.

    Article  CAS  PubMed  Google Scholar 

  52. Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res. 2011;34:1799–816.

    Article  CAS  PubMed  Google Scholar 

  53. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79:103–13.

    Article  CAS  PubMed  Google Scholar 

  54. Ohlsson Rosenborg S, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC, et al. Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol. 2008;64:1175–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sim SC, Nordin L, Andersson TM, Virding S, Olsson M, Pedersen NL, et al. Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:1160–6.

    CAS  PubMed  Google Scholar 

  56. Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol. 2010;69:222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu BN, Chen GL, He N, Ouyang DS, Chen XP, Liu ZQ, et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos. 2003;31:1255–9.

    Article  CAS  PubMed  Google Scholar 

  58. Tsai MH, Lin KM, Hsiao MC, Shen WW, Lu ML, Tang HS, et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics. 2010;11:537–46.

    Article  CAS  PubMed  Google Scholar 

  59. Jin Y, Pollock BG, Frank E, Cassano GB, Rucci P, Müller DJ, et al. Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J Clin Pharmacol. 2010;50:62–72.

    Article  CAS  PubMed  Google Scholar 

  60. Noehr-Jensen L, Zwisler ST, Larsen F, Sindrup SH, Damkier P, Nielsen F, et al. Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur J Clin Pharmacol. 2009;65:887–94.

    Article  CAS  PubMed  Google Scholar 

  61. Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H. Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit. 2006;28:102–5.

    Article  CAS  PubMed  Google Scholar 

  62. Carlsson B, Olsson G, Reis M, Walinder J, Nordin C, Lundmark J, et al. Enantioselective analysis of citalopram and metabolites in a adolescents. Ther Drug Monit. 2001;23:658–64.

    Article  CAS  PubMed  Google Scholar 

  63. Shimoda K, Someya T, Yokono A, Morita S, Hirokane G, Takahashi S, et al. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol. 2002;22:371–8.

    Article  CAS  PubMed  Google Scholar 

  64. van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit. 2005;27:478–83.

    Article  PubMed  Google Scholar 

  65. Morinobu S, Tanaka T, Kawakatsu S, Totsuka S, Koyama E, Chiba K, et al. Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci. 1997;51:253–7.

    Article  CAS  PubMed  Google Scholar 

  66. Koyama E, Tanaka T, Chiba K, Kawakatsu S, Morinobu S, Totsuka S, et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol. 1996;16(4):286–93.

    Article  CAS  PubMed  Google Scholar 

  67. Kirchheiner J, Müller G, Meineke I, Wernecke KD, Roots I, Brockmöller J. Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol. 2003;23:459–66.

    Article  CAS  PubMed  Google Scholar 

  68. Yu KS, Yim DS, Cho JY, Park SS, Park JY, Lee KH, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;69:266–73.

    Article  CAS  PubMed  Google Scholar 

  69. Cho JY, Yu KS, Jang IJ, Yang BH, Shin SG, Yim DS. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol. 2002;53:393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bonnet U. Moclobemide: therapeutic use and clinical studies. CNS Drug Rev. 2003;9:97–140.

    Article  CAS  PubMed  Google Scholar 

  71. Herrlin K, Yasui-Furukori N, Tybring G, Widén J, Gustafsson LL, Bertilsson L. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol. 2003;56:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scordo MG, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol. 2005;97:296–301.

    Article  CAS  PubMed  Google Scholar 

  73. Grasmader K, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol. 2004;60(5):329–36.

    Article  CAS  PubMed  Google Scholar 

  74. Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97(3):125–34.

    Article  CAS  PubMed  Google Scholar 

  75. Pavanello S, et al. Influence of the genetic polymorphism in the 5′-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat Res. 2005;587(1–2):59–66.

    Article  CAS  PubMed  Google Scholar 

  76. Lin KM, et al. CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics. 2010;11(11):1535–43.

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki Y, et al. CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics. J Psychopharmacol. 2011;25(7):908–14.

    Article  CAS  PubMed  Google Scholar 

  78. Katoh Y, et al. Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients. Biol Pharm Bull. 2010;33(2):285–8.

    Article  CAS  PubMed  Google Scholar 

  79. Mihara K, Kondo T, Suzuki A, Yasui-Furukori N, Ono S, Otani K, et al. Effects of genetic polymorphism of CYP1A2 inducibility on the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine in depressed Japanese patients. Pharmacol Toxicol. 2001;88:267–70.

    Article  CAS  PubMed  Google Scholar 

  80. Kuo HW, Liu SC, Tsou HH, Liu SW, Lin KM, Lu SC, et al. CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions. Pharmacogenomics. 2013;14:1191–201.

    Article  CAS  PubMed  Google Scholar 

  81. Howland RH. Critical appraisal and update on the clinical utility of agomelatine, a melatonergic agonist, for the treatment of major depressive disease in adults. Neuropsychiatr Dis Treat. 2009;5:563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang Z, Dragin N, Jorge-Nebert LF, Martin MV, Guengerich FP, Aklillu E, et al. Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenet Genomics. 2006;16:359–67.

    Article  CAS  PubMed  Google Scholar 

  83. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3:561–97.

    Article  CAS  PubMed  Google Scholar 

  84. Keshava C, McCanlies EC, Weston A. CYP3A4 polymorphisms – potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol. 2004;160:825–41.

    Article  PubMed  Google Scholar 

  85. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54:1271–94.

    Article  CAS  PubMed  Google Scholar 

  86. Daly AK. Pharmacogenetics of the cytochromes P450. Curr Top Med Chem. 2004;4:1733–44.

    Article  CAS  PubMed  Google Scholar 

  87. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Mürdter TE, et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics. 2003;13:619–26.

    Article  CAS  PubMed  Google Scholar 

  88. Hesse LM, He P, Krishnaswamy S, Hao Q, Hogan K, von Moltke LL, et al. Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics. 2004;14:225–38.

    Article  CAS  PubMed  Google Scholar 

  89. Hall-Flavin DK, Winner JG, Allen JD, Carhart JM, Proctor B, Snyder KA, et al. Utility of integrated pharmacogenomic testing to support the treatment of major depressive disorder in a psychiatric outpatient setting. Pharmacogenet Genomics. 2013;23:535–48.

    Article  CAS  PubMed  Google Scholar 

  90. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One. 2008;3:e1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M, et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants: a pilot study. Clin Pharmacol Ther. 2004;75:386–93.

    Article  CAS  PubMed  Google Scholar 

  92. Normann C, Hörn M, Hummel B, Grunze H, Walden J. Paroxetine in major depression: correlating plasma concentrations and clinical response. Pharmacopsychiatry. 2004;37:123–6.

    Article  CAS  PubMed  Google Scholar 

  93. Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol. 1997;51:395–8.

    Article  CAS  PubMed  Google Scholar 

  94. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:398–404.

    Article  CAS  PubMed  Google Scholar 

  95. Lin KM, Chiu YF, Tsai IJ, Chen CH, Shen WW, Liu SC, et al. ABCB1 gene polymorphisms are associated with the severity of major depressive disorder and its response to escitalopram treatment. Pharmacogenet Genomics. 2011;21:163–70.

    CAS  PubMed  Google Scholar 

  96. Pirmohamed M. The applications of pharmacogenetics to prescribing: what is currently practicable? Clin Med. 2009;9:493–5.

    Article  Google Scholar 

  97. Kraft JB, Slager SL, McGrath PJ, Hamilton SP. Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry. 2005;58:374–81.

    Article  CAS  PubMed  Google Scholar 

  98. Malhotra AK, Murphy Jr GM, Kennedy JL. Pharmacogenetics of psychotropic drug response. Am J Psychiatry. 2004;161:780–96.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

All authors declare no potential conflicts of interest in writing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston W. Shen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Wu-Chou, A.I., Liu, YL., Shen, W.W. (2016). Genetic Polymorphisms of Cytochrome P450 and Antidepressants. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_34

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics