Skip to main content

Plant Growth Promoting Rhizobacteria in Nutrient Enrichment: Current Perspectives

  • Chapter
  • First Online:
Biofortification of Food Crops

Abstract

The intensive application of chemical fertilizers to meet the growing demand of food for burgeoning population has led to an unprecedented perturbation of the soil environment. Environment degradation has had serious impacts on the nutrient use efficiency by the soil crop plants owing to irrational use of chemical fertilizers, thus warranting prioritization of the beneficial soil microorganisms for improving the soil health. Rhizosphere supports huge diversity of microbial community including beneficial plant growth promoting rhizobacteria (PGPR) as primary determinants of plant health and soil fertility. PGPR colonize roots of dicots and monocots and improve plant growth either by assisting nutrient acquisition (N, P, and essential nutrients) or modulating root system architecture by releasing phytohormones (direct effect) or reducing detrimental effects of various biotic and abiotic stress (indirect effect). The abilities of PGPR are of immense importance in sustainable agriculture in terms of improving crop production and soil health, therefore declining the negative effect of inorganic fertilizers on the environment. This chapter is an effort to illuminate the prevailing scenario on underlying mechanisms of nutrient management by PGPR. It is vital that soil microbiologists and agronomists pay due attention to strategies for nutrient management for enhancing crop production in a sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Khan MS (2009a) Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222

    Article  Google Scholar 

  • Ahemad M, Khan MS (2009b) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82:761–766

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010a) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eur Asian J Biosci 4:88–95

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010c) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29:325–329

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010d) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010e) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pestic Biochem Physiol 98:183–190

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010f) Insecticide-tolerant and plant growth promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67:423–429

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010g) Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann Microbiol 60:735–745

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010h) Improvement in the growth and symbiotic attributes of fungicide-stressed chickpea plants following plant growth promoting fungicide-tolerant Mesorhizobium inoculation. Afr J Basic Appl Sci 2:111–116

    Google Scholar 

  • Ahemad M, Khan MS (2011a) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011b) Effects of insecticides on plant growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100:51–56

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011c) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54–64

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011d) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus) specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011e) Biotoxic impact of fungicides on plant growth promoting activities of phosphate-solubilizing Klebsiella sp. isolated from mustard (Brassica compestris) rhizosphere. J Pestic Sci 85:29–36

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011f) Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62:532–538

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011g) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram (Vigna radiata (L.) Wilczek) in insecticide stressed soils. Symbiosis 54:17–27

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011h) Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea-Rhizobium symbiosis. Sci Hortic 129:266–272

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011i) Plant growth promoting fungicide tolerant Rhizobium improves growth and symbiotic characteristics of lentil (Lens esculentus) in fungicide-applied soil. J Plant Growth Regul 357:449–469

    Google Scholar 

  • Ahemad M, Khan MS (2011j) Response of greengram (Vigna radiata (L.) Wilczek) grown in herbicide-amended soil to quizalafop- p-ethyl and clodinafop tolerant plant growth promoting Bradyrhizobium sp. (vigna) MRM6. J Agric Sci Technol 13:1209–1222

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012b) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emir J Food Agric 30:334–342

    Google Scholar 

  • Ahemad M, Khan MS (2012c) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012d) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012e) Alleviation of fungicide-induced phytotoxicity in greengram (Vigna radiata (L.) Wilczek) using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012f) Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26:1–20

    Article  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai. Appl Environ Microbiol 144:1295–1322

    Google Scholar 

  • Amanullah MM, Archana J, Manoharan S, Subramanian KS (2012) Influence of iron and AM inoculation on metabolically active iron, chlorophyll content and yield of hybrid maize in calcareous soil. J Agron 11:27–30

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Ashraf MA, Rasool M, Mirza MS (2011) Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.). Adv Biol Res 5:348–355

    CAS  Google Scholar 

  • Bagde US, Prasad R, Varma A (2010) Interaction of Mycobiont: Piriformospora Indica with medicinal plants and plants of economic importance. Afr J Biotechnol 9:9214–9226

    Google Scholar 

  • Barea JM (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw 81:343–351

    Article  CAS  Google Scholar 

  • Bernard RG (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Press, Basel, pp 71–86

    Chapter  Google Scholar 

  • Bhagat D, Sharma P, Sirari A, Kumawat KC (2014) Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int J Curr Microbiol Appl Sci 3:923–930

    Google Scholar 

  • Bharadwaj DP, Alstrom S, Lundquist PO (2012) Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria and plant pathogens under in vitro conditions. Mycorrhiza 22:437–447

    Article  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Boiero L, Perriq D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  Google Scholar 

  • Bonnefoy V, Holmes DS (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611

    Article  CAS  Google Scholar 

  • Borlaug EN, Dowswell CR (1994) Feeding a human population that increasingly crowds a fragile planet. Paper presented at 15th world congress of soil science, World congress of soil science, Acapulco, 10–16 July 1994

    Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    CAS  Google Scholar 

  • Bottomley PJ, Myrold DD (2007) Biological N inputs. In: Paul E (ed) Soil microbiology, ecology and biochemistry. Academic, Oxford, pp 365–387

    Chapter  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  CAS  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BB, Coenen C (2008) 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant-Microbe Interact 21:1349–1358

    Article  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Compion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  CAS  Google Scholar 

  • Carrillo-Castaneda G, Juárez Munos J, Peralta-Videa JR, Gomez E, Tiemannb KJ, Duarte-Gardea M, Gardea-Torresdey JL (2002) Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv Environ Res 6:391–399

    Article  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolate on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176

    Article  CAS  Google Scholar 

  • Cojho EH, Reis VM, Schenberg ACG, Dobereiner J (1993) Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol Lett 106:341–346

    Article  CAS  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R et al (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 73–109

    Google Scholar 

  • Dary M, Chamber-Parez MA, Palomares AJ, Pajeuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Google Scholar 

  • Deryl M, Skorupska A (1992) Rhizobial siderophore as an iron source for clover. Physiol Plant 85:549–553

    Article  Google Scholar 

  • Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci 103:18450–18457

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Drogue B, Meynet EC, Loccoz MY, Dye FW, Cambaret PC (2013) Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals. .In: deBruijn FJ (ed) Molecular Microbial Ecology of the Rhizosphere, 1&2, Wiley, Hoboken, pp 281–294

    Google Scholar 

  • Duan J, Mullar KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  Google Scholar 

  • Fernandez-Bidondo L, Silvani V, Colombo R, Pergola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Selden L, de Araujo FF, Mariano RLM (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 21–42

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 25:1–7

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling process. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gutiérrez-Manero FJ, Romas-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microorganism interactions. J Exp Bot 63:3429–3444

    Article  CAS  Google Scholar 

  • Hayat R, Ahmed I, Sheirdil RA (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Ashraf M, Ozturk M, Ahmad MS, Aksoy A (eds) Crop production for agricultural improvement, part 3. Springer, Dordrecht, pp 557–579

    Chapter  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • Herrera Medina MJ, Steinkellner S, Vierheilig H, Okampo-Bote JA, Garcia-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  Google Scholar 

  • Hodge A, Compbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  Google Scholar 

  • Hussin ASM, Farouk AE, Greiner R, Salleh HM, Ismail AF (2007) Phytate degrading enzyme production by bacteria isolated from Malaysian soil. World J Microbiol Biotechnol 23:1653–1660

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamond back moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5:27–42

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jiang C, Sheng X, Quan M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    Article  CAS  Google Scholar 

  • Jida M, Assefa F (2012) Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from chickpea (Cicer arietinum L.) growing areas of Ethiopia. Afr J Biotechnol 11:7483–7493

    CAS  Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced iron uptake in red clover. Plant Cell Environ 29:888–897

    Article  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron-deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover (Trifolium pratense L.). Plant Physiol 144:278–285

    Article  CAS  Google Scholar 

  • Jin CW, You GY, Zheng SJ (2008) The iron deficiency-induced phenolics secretion plays multiple important roles in plant iron acquisition underground. Plant Signal Behav 3:60–61

    Article  Google Scholar 

  • Jorquera M, Martınez O, Maruyama F, Marschner P, Mora ML (2008a) Current and future bio-technological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    Article  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora ML (2008b) Isolation of culturable phosphor-bacteria with both phytate mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kaur N, Sharma P (2013) Screening and characterization of native Pseudomonas sp. as plant growth promoting rhizobacteria in chickpea (Cicer arietinum L.) rhizosphere. Afr J Microbiol Res 7:1465–1474

    CAS  Google Scholar 

  • Khalid A, Tahir S, Arshad M, Zahir ZA (2004) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Aust J Soil Res 42:921–926

    Article  CAS  Google Scholar 

  • Khalid A, Akhtar MJ, Mahmood MH, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khandelwal SR, Manwar AV, Chaudhari BL, Chincholkar SB (2002) Siderophoregenic bradyrhizobia boost yield of soybean. Appl Biochem Biotechnol 102:155–168

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IVth international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Vegetale et Phyto-Bacteriologie, Angers, pp 879–882

    Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation and regulation in higher plants. Annu Rev Plant Physiol Plant Mol Biol 63:131–152

    Article  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Narie JD, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl H, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  Google Scholar 

  • Kumawat KC, Sharma P, Gill BS, Kaur G (2014) Isolation and characterization of non-rhozobial endophytes bacteria in soybean (Glycine max (L.) Merill) In: Mahal GS, Chawla W (eds) Proceedings of international conference on crop productivity and sustainability – shaping the future held at Baba Farid Group of Institutes, Bathinda, pp 155–160

    Google Scholar 

  • Labidi S, Jeddi FB, Tisserant B, Debiane D, Rezgui S, Ferjani AG, Sahraoui ALH (2012) Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22:337–345

    Article  CAS  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate mineralizing bacteria. ISME J 1:321–330

    CAS  Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Lucas JA, Solano BR, Montes F, Ojeda J, Megias M, Manero FJG (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop Res 114:404–410

    Article  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Anton Leeuw 86:1–25

    Article  CAS  Google Scholar 

  • Ludwig-Muller J, Guther M (2007) Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav 2:194–196

    Article  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011a) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JAF, Freitas H (2011b) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139

    Article  CAS  Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AMF (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  Google Scholar 

  • Mader P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Arangno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kang BG, Lee YJ, Chung JB (2010) Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71–82

    Article  CAS  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    Article  Google Scholar 

  • Martinsez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Masaoka Y, Koshino H, Arakawa Y, Asanuma S (1997) Growth promoting effect of root exudates of Fe-deficient alfalfa on Rhizobium meliloti. In: Proceedings of the XIII international plant nutrition colloquium, Plant nutrition for sustainable food production and environment, Tokyo, pp 505–506

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  Google Scholar 

  • Medeiros CAB, Clark RB, Ellis JR (1993) Effects of MES (2(N-morpholino) ethane sulfonic acid) and pH on mineral nutrient uptake by mycorrhizal and non mycorrhizal maize. J Plant Nutr 16:2255–2272

    Article  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  Google Scholar 

  • Minaxi LN, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl Soil Ecol 59:124–135

    Article  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Article  CAS  Google Scholar 

  • Mishra PK, Bisht SC, Mishra S, Selvakumar G, Bisht JK, Gupta HS (2012) Coinoculation of Rhizobium leguminosarum- PR1 with a cold tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutr 35:243–256

    Article  CAS  Google Scholar 

  • Murgia I, Arosio P, Tarantino D, Soave C (2012) Crops biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17:47–55

    Article  CAS  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145

    CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  Google Scholar 

  • Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414

    Article  CAS  Google Scholar 

  • Neeraj KS (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295

    Article  Google Scholar 

  • Neumann G, Romheld V (2000) The release of root exudates as affected by the plant physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Dekker, New York, pp 41–89

    Google Scholar 

  • Nozoye T, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  CAS  Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Dobereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micro-propagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Pedrosa FO, Hungria M, Yates G (2002) Horizontal gene transfer in rhizobia: ecological implications. In: Nitrogen fixation: from molecules to crop productivity. Springer, Netherlands, pp 593–594

    Google Scholar 

  • Peoples MB, Giller KE, Herridge DF, Vessey JK (2002) Limitations to biological nitrogen fixation as a renewable source of nitrogen for agriculture. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation: global perspectives. CAB International, Wallingford, pp 356–360

    Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Article  CAS  Google Scholar 

  • Perez-Montano F, Villegas CA, Bellogin RA, Cerro PD, Espuny MR, Guerrero IJ, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from micro organism capacities to crop production. Microbiol Res 169:325–336

    Article  CAS  Google Scholar 

  • Peskan-Berghofer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Plant Physiol 122:465–477

    Article  CAS  Google Scholar 

  • Peterson BM, Ferrarese L, Gilbert KM (2004) Central masses and broad-line region sizes of active galactic nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophy J 613:682–699

    Article  CAS  Google Scholar 

  • Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M (2004) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 593–616

    Google Scholar 

  • Pindi PK, Sultana T, Vootla PK (2014) Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech 4:305–315

    Article  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa TM (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  Google Scholar 

  • Prasad R (2010) Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr Sci 98:1300–1304

    CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Raju PS, Clarck RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int Biodeterior Biodegrad 63:62–66

    Article  CAS  Google Scholar 

  • Raudales RE, Stone E, Gardener BM (2009) Seed treatment with 2, 4-diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of nutrient uptake. Phytopathology 99:506–511

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1961–1969

    Article  Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162

    Article  CAS  Google Scholar 

  • Rengel Z (2008) Bioavailability of phosphorus and micronutrients in the soil-plant-microbe continuum. J Soil Sci Plant Nutr 8:84–91

    Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7:333–337

    Article  Google Scholar 

  • Rodrigues EP, Rodrigues LS, De Oliveira ALM, Baldani VLD, Teixeira KRDS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    Article  CAS  Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi PN, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566

    Google Scholar 

  • Roy N, Chakrabartty PK (2000) Effect of aluminum on the production of siderophore by Rhizobium sp. (Cicer arietinum). Curr Microbiol 41:5–10

    Article  CAS  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Article  Google Scholar 

  • Salamone IEG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Amsterdam, pp 173–195

    Chapter  Google Scholar 

  • Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  Google Scholar 

  • Sawers RJ, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov. a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  CAS  Google Scholar 

  • Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SVS (2011) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean–wheat cropping system in central India. J Microbiol Biotechnol 21:1127–1142

    Article  CAS  Google Scholar 

  • Sharma P, Kumawat KC, Kaur S, Kaur N (2014) Assessment of zinc solubilisation by plant growth promoting rhizobacteria in legume rhizosphere. Ind J Appl Res 4:439–441

    Article  Google Scholar 

  • Shedova E, Lipasova V, Velikodvorskaya G, Ovadis M, Chernin L, Khmel I (2008) Phytase activity and its regulation in a rhizospheric strain of Serratia plymuthica. Folia Microbiol 53:110–114

    Article  CAS  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (eds) PGPR: biocontrol and biocontrol. Springer, Dordrecht, pp 112–142

    Google Scholar 

  • Sivaramaiah N (2007) Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by co-inoculation of Bacillus strains with Mesorhizobium sp. Cicer. Indian J Microbiol 47:51–56

    Article  CAS  Google Scholar 

  • Soerensen KU, Terry RE, Jolley VD, Brown JC, Vargas ME (1988) The interaction of iron-stress response and root nodules in iron efficient and inefficient soybeans. J Plant Nutr 11:853–865

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Sultana T, Pindi PK (2012) Role of arbuscular mycorrhizae (AM) fungi and multi bioinoculants in cotton plant growth. Br Microbiol Res J 2:123–130

    Article  Google Scholar 

  • Sun Y, Cheng Z (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  CAS  Google Scholar 

  • Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Tejeda-Sartorius M, Martizez de la Vega O, Delano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133:339–353

    Article  CAS  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-fixing Rhizobium–legume symbioses. Adv Microb Physiol 60:325–389

    Article  CAS  Google Scholar 

  • Terry RE, Hartzook A, Jolley VD, Brown JC (1988) Interactions of iron nutrition and symbiotic nitrogen fixation in peanuts. J Plant Nutr 11:811–820

    Article  CAS  Google Scholar 

  • Treeby MT (1992) The role of mycorrhizal fungi and non-mycorrhizal microorganisms in iron nutrition of citrus. Soil Biol Biochem 24:857–864

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA (2006) Microbial producers of plant growth stimulators and their practical use. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Turner BL, Paphazy MJ, Haygarth PM, Mckelvie LD (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469

    Article  CAS  Google Scholar 

  • Unkovich M, Baldock J (2008) Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol Biochem 40:2915–2921

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact J 20:441–447

    Article  CAS  Google Scholar 

  • Varma A, Verma S, Sahay NS, Butehorn B, Franken P (1999) Piriformospora indica a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    CAS  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, a new root colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Ober-winkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  Google Scholar 

  • Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH (2012) Induction of root Fe (III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J Exp Bot 63:859–870

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk FK, El-Fattah A, Squartini A, Corich V, Giacomini A, Bruijn FD, Rademaker J, Flores JM, Ostrom P (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Yasmin S, Hafeez FY, Schmid M, Hartmann A (2013) Plant-beneficial rhizobacteria for sustainable increased yield of cotton with reduced level of chemical fertilizers. Pak J Bot 45:655–662

    CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  Google Scholar 

  • Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth promoter Bacillus cereus strain MQ23 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 42:567–575

    Article  Google Scholar 

  • Zheng SJ (2010) Iron homeostasis and iron acquisition in plants: maintenance, functions and consequences. Ann Bot 105:799–800

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sharma, P., Kumawat, K.C., Kaur, S. (2016). Plant Growth Promoting Rhizobacteria in Nutrient Enrichment: Current Perspectives. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_20

Download citation

Publish with us

Policies and ethics