Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 51)


This chapter presents a concise overview of FPGA-based architecture design. Certain existing research work behind proposing new FPGA architectures and CAD heuristics to overcome the design limitations have been discussed. It also unfolds the limitations of the FPGA CAD tool that are currently popular for arithmetic core generation. A methodology that uses the target FPGA specific primitive instantiation-based approach and constrained placement exercise has been proposed as a superior alternative in comparison to design implementations available in literature. The major contributions of this book have also been listed.


Field Programmable Gate Array Arithmetic Circuit Hardware Description Language Greatest Common Divisor Critical Path Delay 


  1. 1.
    Ahmed, T., Kundarewich, P.D., Anderson, J.H.: Packing techniques for virtex-5 FPGAs. ACM Trans. Reconfig. Technol. Syst. (TRETS). 2(18), 18:1–18:24 (2009)Google Scholar
  2. 2.
    Athow, J.L., Al-Khalili, A.J.: Implementation of large–integer hardware multiplier in Xilinx FPGA. In: 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1300–1303 (2008)Google Scholar
  3. 3.
    Cosoroaba, A., Rivoallon, F.: Xilinx Inc., White Paper: Virtex-5 Family of FPGAs, Achieving Higher System Performance with the Virtex-5 Family of FPGAs, WP245 (v1.1.1). Cited 7 July 2006
  4. 4.
    Deschamps, J.-P., Sutter, G.D., Canto, E.: Guide to FPGA Implementation of Arithmetic Functions. Ser. Lecture Notes in Electrical Engineering. Springer, vol. 149 (2012)Google Scholar
  5. 5.
    de Dinechin, F., Pasca, B.: Large Multipliers With Fewer DSP Blocks. In: International Conference on Field Programmable Logic and Applications (FPL), pp. 250–255 (2009)Google Scholar
  6. 6.
    de Dinechin, F., Pasca, B.: Designing custom arithmetic data paths with FloPoCo. IEEE Des. Test Comput. 28(3), 18–27 (2011)CrossRefGoogle Scholar
  7. 7.
    Ehliar, A.: Optimizing Xilinx designs through primitive instantiation. In: Proceedings of the 7th FPGAworld Conference, pp. 20–27 (2010)Google Scholar
  8. 8.
    FloPoCo.: Arithmetic Core Generator. Cited 12 Sep 2013
  9. 9.
    Hauck, S., Hosler, M.M., Fry, T.W.: High-Performance Carry Chains for FPGA’s. In: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(2), 138–147 (2000)Google Scholar
  10. 10.
    Jump, J.R., Ahuja, S.R.: Effective pipelining of digital systems. IEEE Trans. Comput. 27(9), 855–865 (1978)CrossRefMATHGoogle Scholar
  11. 11.
    Kimura, S., Horiyama, T., Nakanishi, M., Kajihara, H.: Folding of logic functions and its application to look up table compaction. In: IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 694–697 (2002)Google Scholar
  12. 12.
    Parandeh-Afshar, H., Neogy, A., Brisk, P., Ienne, P.: Compressor Tree Synthesis on Commercial High-Performance FPGAs. ACM TRETS. 4(4), 39:1–39:19 (2011)Google Scholar
  13. 13.
    Perri, S., Zicari, P., Corsonello, P.: Efficient absolute difference circuits in Virtex-5 FPGAs. In: 15th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 309–313 (2010)Google Scholar
  14. 14.
    Preu\(\beta \)er, T.B., Spallek, R.G.: Mapping basic prefix computations to fast carry-chain structures. In: International Conference on Field Programmable Logic and Applications (FPL), pp. 604–608 (2009)Google Scholar
  15. 15.
    Preu\(\beta \)er, T.B., Spallek, R.G.: Enhancing FPGA device capabilities by the automatic logic mapping to additive carry chain. In: International Conference on Field Programmable Logic and Applications (FPL), pp. 318–325 (2010)Google Scholar
  16. 16.
    Preu\(\beta \)er, T.B., Zabel, M., Spallek, R.G.: Accelerating computations on FPGA carry chains by operand compaction. In: 20th IEEE Symposium on Computer Arithmetic (ARITH), pp. 95–102 (2011)Google Scholar
  17. 17.
    Singh, S., Rose, J., Chow, P., Lewis, D.: The effect of logic block architecture on FPGA performance. IEEE J. Solid-State Circ. 27(3), 281–287 (1992)CrossRefGoogle Scholar
  18. 18.
    Vazquez, M., Sutter, G., Bioul, G., Deschamps, J.P.: Decimal adders/subtractors in FPGA: Efficient 6-input LUT implementations. In: International Conference on Reconfigurable Computing and FPGAs (ReConFig), pp. 42–47 (2009)Google Scholar
  19. 19.
    Woo, N.-S.: Revisiting the cascade circuit in logic cells of lookup table based FPGAs. In: Proceedings of the Third International ACM Symposium on Field-Programmable Gate Arrays, pp. 90–96 (1995)Google Scholar
  20. 20.
    Xilinx Inc.: Virtex-5 FPGA XtremeDSP Design Considerations User Guide, UG193 (v3.5). Cited 26 Jan 2012
  21. 21.
    Xilinx Inc.: Virtex-5 Libraries Guide for HDL Design, UG621 (v11.3). Cited 6 Sep 2009
  22. 22.
    Xilinx Inc.: Virtex-6 FPGA DSP48E1 Slice User Guide, UG369 (v1.3). Cited 14 Feb 2011
  23. 23.
    Xu, S., Fahmy, S.A., McLoughlin I.V.: Efficient large integer squarers on FPGA. In: 21st Annual International IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 198–201 (2013)Google Scholar
  24. 24.
    Zicari, P., Perri, S.: A fast carry chain adder for Virtex-5 FPGAs. In: 15th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 304–308 (2010)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Electronics and Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations