Skip to main content

Oxidative Stress in Low Birth Weight Newborns

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

Free radical damage has been recognized to be a common pathogenic mechanism of many neonatal diseases. An excessive and/or sustained increase in free radical production associated with diminished efficacy of the antioxidant defense systems results in oxidative stress, which occurs in many pathologic processes and contributes significantly to disease and can be the key link between size at birth and increased morbidity later in life. Low birth weight is closely associated with fetal and neonatal mortality and morbidity, inhibited growth and cognitive development, and chronic diseases later in life. Low birth weight is considered the primary factor associated with a poor perinatal outcome of maternal preeclampsia/eclampsia and premature birth. High oxidative stress and low level of enzymatic antioxidants and antioxidant nutrients such as vitamins A, E, and C, zinc, copper, and selenium and antioxidant status might be increasing the risk of pathogenesis of major complications in low birth weight newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum SL, Anderson IGM, Baker RR et al (2003) Electron spin resonance and spin trap investigation of free radicals in cigarette smoke: development of a quantification procedure. Anal Chim Acta 481:1–13

    CAS  Google Scholar 

  2. Dalle-Donne I, Scaloni A, Giustarini D et al (2005) Proteins as biomarkers of oxidative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24:55–99

    CAS  PubMed  Google Scholar 

  3. Winterbourn CC, Buss H (1999) Protein carbonyl measurement by enzyme-linked immunosorbent assay. Methods Enzymol 300:106–111

    CAS  PubMed  Google Scholar 

  4. Levine RL, Wehr N, Williams JA et al (2000) Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 99:15–24

    CAS  PubMed  Google Scholar 

  5. Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85:S67–S74

    CAS  PubMed  Google Scholar 

  6. Sunde RA, Weiss SL, Thompson KM et al (1992) Dietary selenium regulation of glutathione peroxidase mRNA-implications for selenium requirement. FASEB J 6:1365

    Google Scholar 

  7. Luo ZC, Fraser WD, Julien P et al (2006) Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses 66:38–44

    CAS  PubMed  Google Scholar 

  8. Largo RH, Wailli R, Duc G et al (1980) Evaluation of perinatal growth. Helv Pedaitr Acta 35:419–436

    CAS  Google Scholar 

  9. Pitkanen OM, Hallman M, Andersson SM (1990) Correlation of free oxygen radical-induced lipid peroxidation with outcome in very low birth weight infants. J Pediatr 116:760–764

    CAS  PubMed  Google Scholar 

  10. Buonocore G, Perrone S (2006) Biomarkers of oxidative stress in the fetus and newborn. Hematology 2:103–107

    Google Scholar 

  11. Saugstad OD (1996) Mechanisms of tissue injury by oxygen radicals: implication for neonatal disease. Acta Paediatr 85:1–4

    CAS  PubMed  Google Scholar 

  12. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    CAS  PubMed  Google Scholar 

  13. Saugstad OD (1998) Oxygen radical disease in neonatology. Semin Neonatol 3:229–238

    Google Scholar 

  14. Buonocore G, Perrone S, Longini M et al (2000) Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies. Pediatr Res 47:221–224

    CAS  PubMed  Google Scholar 

  15. Kondo M, Itoh S, Isobe K (2000) Chemiluminescence because of the production of reactive oxygen species in the lungs of newborn piglets during resuscitation periods after asphyxiation load. Pediatr Res 45:524–527

    Google Scholar 

  16. Weinberger B, Laskin DL, Heck DE (2002) Oxygen toxicity in premature infants. Toxicol Appl Pharmacol 181:60–67

    CAS  PubMed  Google Scholar 

  17. Matsubasa T, Uchino T, Karashima S et al (2002) Oxidative stress in very low birth weight infants as measured by urinary 8-OHdG. Free Radic Res 36:189–193

    CAS  PubMed  Google Scholar 

  18. Saugstad OD (2005) Oxidative stress in the newborn. A 30-year perspective. Biol Neonate 88:228–236

    CAS  PubMed  Google Scholar 

  19. Saugstad OD (2003) Oxygen toxicity at birth: the pieces are put together. Pediatr Res 54:789

    Google Scholar 

  20. Saugstad OD (2001) Update on oxygen radical disease in neonatology. Curr Opin Obstet Gynecol 13:147–153

    CAS  PubMed  Google Scholar 

  21. Buonocore G, Perrone S, Longini M (2002) Oxidative stress in preterm neonates at birth and on seventh day of life. Pediatr Res 52:46–49

    CAS  PubMed  Google Scholar 

  22. Sullivan JL, Newton RB (1988) Serum antioxidant activity in neonates. Arch Dis Child 63:748–750

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Volpe JJ (1990) Brain injury in the premature infant: is it preventable? Pediatr Res 27(Suppl 6):S28–S33

    CAS  PubMed  Google Scholar 

  24. Noseworthy MD, Bray TM (2000) Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proc Soc Exp Biol Med 223:175–182

    CAS  PubMed  Google Scholar 

  25. Ambalavanan N, Carlo WA (2004) Bronchopulmonary dysplasia: new insights. Clin Perinatol 31:613–628

    PubMed  Google Scholar 

  26. Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-induced angiogenesis. Nature 359:843–845

    CAS  PubMed  Google Scholar 

  27. Rogers MS, Wang W, Mongelli M et al (1997) Lipid peroxidation in cord blood at birth: a marker of fetal hypoxia during labor. Gynecol Obstet Ivest 44:229–233

    CAS  Google Scholar 

  28. Schlenzig JS, Bervoets K, Loewenich V et al (1993) Urinary malondialdehyde concentration in preterm neonates: is there a relationship to disease entities of neonatal intensive care? Acta Paediatr 82:202–205

    CAS  PubMed  Google Scholar 

  29. Mocatta TJ, Winterbourn CC, Inder TE et al (2004) The effect of gestational age and labour on markers of lipid and protein oxidation in cord plasma. Free Radic Res 38:185–191

    CAS  PubMed  Google Scholar 

  30. Gupta P, Narang M, Banerjee BD et al (2004) Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study. BMC Pediat 20020:4–14

    Google Scholar 

  31. Kamath U, Rao G, Kamath SU et al (2006) Maternal and fetal indicators of oxidative stress during intrauterine growth retardation (IUGR). Indian J Clin Biochem 21(1):111–115

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gveric-Ahmetasevic S, Sunjic SB et al (2009) Oxidative stress in small-for-gestational age (SGA) term newborns and their mothers. Free Radic Res 43:376–384

    CAS  PubMed  Google Scholar 

  33. Saker M, Mokhtari NS, Merzouk SA et al (2008) Oxidant and antioxidant status in mothers and their newborns according to birth weight. Eur J Obstet Gynecol Reprod Biol 141:95–99

    CAS  PubMed  Google Scholar 

  34. Sridhar MG, Setia S, John M et al (2007) Oxidative stress varies with the mode of delivery in intrauterine growth retardation: association with apgar score. Clin Biochem 40:688–691

    CAS  PubMed  Google Scholar 

  35. Nassi N, Ponziani V, Becatti M et al (2009) Anti-oxidant enzymes and related elements in term and preterm newborns. Pediatr Int 51:183–187

    CAS  PubMed  Google Scholar 

  36. Drury JA, Jeffers G, Cooke RW (1998) Urinary 8-hydroxydeoxyguanosine in infants and children. Free Radic Res 28:423–424

    CAS  PubMed  Google Scholar 

  37. Scholl TO, Stein TP (2001) Oxidative damage to DNA and pregnancy outcome. J Matern Fetal Med 10:182–185

    CAS  PubMed  Google Scholar 

  38. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Ann Rev Biochem 63:915–948

    CAS  PubMed  Google Scholar 

  40. Negi R, Pande D, Kumar A et al (2012) Evaluation of biomarkers of oxidative stress and antioxidant capacity in the cord blood of preterm low birth neonates. J Matern Fetal Neonatal Med 25:1338–1341

    CAS  PubMed  Google Scholar 

  41. Negi R, Pande D, Kumar A et al (2012) In vivo oxidative DNA damage and lipid peroxidation as a biomarker of oxidative stress in preterm low birth weight infants. J Trop Pediatr 58:326–328

    PubMed  Google Scholar 

  42. Inanc F, Kilinc M, Kiran G et al (2005) Relationship between oxidative stress in cord blood and route of delivery. Fetal Diagn Ther 20:450–453

    PubMed  Google Scholar 

  43. Frosali S, Di Simplicio P, Perrone S et al (2004) Recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth. Biol Neonate 85:188–194

    CAS  PubMed  Google Scholar 

  44. Shane RT, Paul KW, Grant RD (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10:1713–1765

    Google Scholar 

  45. Gicquel C, Le Bouc Y (2006) Hormonal regulation of fetal growth. Horm Res 65:28–33

    CAS  PubMed  Google Scholar 

  46. Roberts JM, Redman CWG (1993) Pre-eclampsia: more than pregnancy induced hypertension. Lancet 341:1447–1451

    CAS  PubMed  Google Scholar 

  47. Villar J, Say L, Gulmezoglu AM et al (2003) Eclampsia and preeclampsia: a health problem for 2000 years. In: Critchley H, MacLean A, Poston L, Walker J (eds) Pre-eclampsia. RCOG Press, London, pp 189–208

    Google Scholar 

  48. Meis PJ, Goldenberg RL, Mercer BM et al (1998) The preterm prediction study: risk factors for indicated preterm births. Maternal-Fetal Medicine Units Network of the National Institute of Child Health and Human Development. Am J Obstet Gynecol 178:562–567

    CAS  PubMed  Google Scholar 

  49. Ness RB, Roberts JM (1996) Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol 175:1365–1370

    CAS  PubMed  Google Scholar 

  50. Roberts JM, Hubel CA (1999) Is oxidative stress the link in the two-stage model of pre-eclampsia? Lancet 354:788–789

    CAS  PubMed  Google Scholar 

  51. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–799

    PubMed  Google Scholar 

  52. Duley L (2009) The global impact of pre-eclampsia and eclampsia. Semin Perinatol 33:130–137

    PubMed  Google Scholar 

  53. Trindade CEP, Rugolo LMSS (2007) Free radicals and neonatal diseases. NeoReviews 8:522–532

    Google Scholar 

  54. Mitani M, Matsuda Y, Makino Y et al (2009) Clinical features of fetal growth restriction complicated later by preeclampsia. J Obstet Gynaecol Res 35:882–887

    PubMed  Google Scholar 

  55. Groom K, North R, Poppe K et al (2007) The association between customised small for gestational age infants and preeclampsia or gestational hypertension varies with gestation at delivery. BJOG 114:478–484

    CAS  PubMed  Google Scholar 

  56. Wu C, Nohr E, Bech B et al (2009) Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol 201:269.e1–269.e10

    Google Scholar 

  57. Steinborn A, Sohn C, Sayehli C (2001) Preeclampsia, a pregnancy-specific disease, is associated with fetal monocyte activation. Clin Immunol 100:305–313

    CAS  PubMed  Google Scholar 

  58. Negi R, Pande D, Karki K et al (2012) Trace elements and antioxidant enzymes associated with oxidative stress in pre-eclamptic, eclamptic mother during fetal circulation. Clin Nutr 31:946–950

    CAS  PubMed  Google Scholar 

  59. Chamy VM, Lepe J, Catalan A et al (2006) Oxidative stress is closely related to clinical severity of pre-eclampsia. Biol Res 39:229–236

    CAS  PubMed  Google Scholar 

  60. Howlader ZH, Parveen S, Tamanna S et al (2009) Oxidative stress and antioxidant status in neonates born to preeclamptic mother. J Trop Pediatr 55:363–367

    PubMed  Google Scholar 

  61. Maseki M, Nishigaki I, Hagihara M (1981) Lipid peroxide levels and lipid serum content of serum lipoprotein fractions of pregnant subjects with and without preeclampsia. Clin Chim Acta 155:155–161

    Google Scholar 

  62. McLaughlin MK (1989) Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol 161:1025–1034

    PubMed  Google Scholar 

  63. Durak I (2007) Role of oxidative stress in intrauterine growth restriction. Gynecol Obstet Invest 64:187–192

    PubMed  Google Scholar 

  64. El-Bana SM, El-Din AE, Isamil ZA (2001) Fetal and maternal oxidative stress in normal and abnormal pregnancies. Ain Shams Med J 52:421–431

    Google Scholar 

  65. Aydin S, Benian A, Madazli R et al (2004) Plasma malondialdehyde, superoxide dismutase, sEselectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur J Obstet Gynecol Reprod Biol 113:21–25

    CAS  PubMed  Google Scholar 

  66. Serder Z, Gur E, Colakoethullary M et al (2003) Lipid and protein oxidation and antioxidant function in women with mild and severe pre-eclampsia. Arch Gynecol Obstet 268:19–25

    Google Scholar 

  67. Zusterzeel PL, Mulder TP, Peters WH et al (2000) Plasma protein carbonyls in non-pregnant, healthy pregnant and pre-eclamptic women. Free Radic Res 33:471–476

    CAS  PubMed  Google Scholar 

  68. Zusterzeel PL, Rütten H, Roelofs HM et al (2001) Protein carbonyls in decidua and placenta of pre-eclamptic women as markers for oxidative stress. Placenta 22:213–219

    CAS  PubMed  Google Scholar 

  69. Ames BN (1989) Endogenous oxidative DNA damage, aging, and cancer. Free Radic Commun 7:121–128

    CAS  Google Scholar 

  70. Wiktor H, Kankofer M, Schmerold I et al (2004) Oxidative DNA damage in placentas from normal and pre-eclamptic pregnancies. Virchows Arch 445:74–78

    CAS  PubMed  Google Scholar 

  71. Takagi Y, Nikaido T, Toki T et al (2004) Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchow Arch 444:49–55

    CAS  Google Scholar 

  72. Leslie M, Xiaolan C (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Google Scholar 

  73. Doetsch PW, Cunningham RP (1990) The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res 236:173–201

    CAS  PubMed  Google Scholar 

  74. Orhan H, Onderoglu L, Yucel A (2003) Circulating biomarkers of oxidative stress in complicated pregnancies. Arch Gynecol Obstet 267:189–195

    CAS  PubMed  Google Scholar 

  75. Uotila J, Tuimala R, Pyykko K et al (1993) Pregnancy induced hypertension is associated with changes in maternal and umbilical blood antioxidants. Gynecol Obstet Invest 36:153–157

    CAS  PubMed  Google Scholar 

  76. Jauniaux E, Watson AL, Hempstock J et al (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sikkema JM, Van Rijn BB, Franx A et al (2001) Placental superoxide is increased in pre-eclampsia. Placenta 22:304–308

    CAS  PubMed  Google Scholar 

  78. Wang Y, Walsh SW (2001) Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta 22:206–212

    CAS  PubMed  Google Scholar 

  79. Boutet M, Roland L, Thomas N et al (2009) Specific systemic antioxidant response to preeclampsia in late pregnancy: the study of intracellular glutathione peroxidases in maternal and fetal blood. Am J Obstet Gynecol 200:530.e1–530.e7

    Google Scholar 

  80. Karsdorp VH, Dekker GA, Bast A (1998) Maternal and fetal plasma concentrations of endothelin, lipid hydroperoxides, glutathione peroxidase and fibronectin in relation to abnormal umbilical artery velocimetry. Eur J Obstet Gynecol Reprod Biol 80:39–44

    CAS  PubMed  Google Scholar 

  81. Mistry HD, Kurlak LO, Williams PJ et al (2010) Differential expression and distribution of placenta glutathione peroxidases 1, 3 and 4 in normal and preeclamptic pregnancy. Placenta 31:401–408

    CAS  PubMed  Google Scholar 

  82. Wang Y, Walsh SW (1996) Antioxidant activities and mRNA expression of superoxide dismutase, catalase and glutathione peroxidase in normal and preeclamptic placentas. J Soc Gynecol Investig 3:179–184

    CAS  PubMed  Google Scholar 

  83. Sharma JB, Sharma A, Bahadur A et al (2006) Oxidative stress markers and antioxidant levels in normal pregnancy and pre-eclampsia. Int J Gynaecol Obstet 94:23–27

    CAS  PubMed  Google Scholar 

  84. Llurba E, Gratacos E, Martin-Gallan P et al (2004) A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy. Free Radic Biol Med 37:557–570

    CAS  PubMed  Google Scholar 

  85. Diedrich F, Renner A, Rath W et al (2001) Lipid hydroperoxides and free radical scavenging enzyme activities in preeclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome: no evidence for circulating primary products of lipid peroxidation. Am J Obstet Gynecol 185:166–172

    CAS  PubMed  Google Scholar 

  86. Hubel CA, Kagan VE, Kisin ER (1997) Increased ascorbate radical formation and ascorbate depletion in plasma from women with preeclampsia – implications for oxidative stress. Free Radic Biol Med 23:597–609

    CAS  PubMed  Google Scholar 

  87. Czerinichow S, Hercberg S (2001) International studies concerning the role of antioxidant vitamins in cardiovascular diseases: a review. J Nutr Health Aging 5:188–195

    Google Scholar 

  88. Diplock AT (1991) Antioxidant nutrients and disease prevention: an overview. Am J Clin Nutr 53:1893–1935

    Google Scholar 

  89. Wang Y, Walsh SW, Guo J et al (1991) The imbalance between thromboxane and prostacyclin in pre-eclampsia is associated with an imbalance between lipid peroxides and vitamin E in maternal blood. Am J Obstet Gynecol 165:695–700

    Google Scholar 

  90. Schiff E, Friedman SA, Stampfer M et al (1996) Dietary consumption and plasma concentrations of vitamin E in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 175:1024–1028

    CAS  PubMed  Google Scholar 

  91. Rodriguez RJ, Martin RJ, Fanaroff AA (2002) Respiratory distress syndrome and its management. In: Fanaroff AA, Martin RJ (eds) Neonatal-perinatal medicine: diseases of the fetus and infant, 7th edn. Mosby, St. Louis, pp 1001–1011

    Google Scholar 

  92. Nemeth I, Boda D (1994) Blood glutathione redox ratio as a parameter of oxidative stress in premature infants with IRDS. Free Rad Biol Med 16:347–353

    CAS  PubMed  Google Scholar 

  93. Krediet TG, Cirkel GA, Vreman HJ et al (2006) End-tidal carbon monoxide measurements in infant respiratory distress syndrome. Acta Paediatr 95:1075–1082

    PubMed  Google Scholar 

  94. Lang JD, McArdle PJ, O’Reilly PJ et al (2002) Oxidant-antioxidant balance in acute lung injury. Chest 122:314S–320S

    CAS  PubMed  Google Scholar 

  95. Frank L, Sosenko IR (1987) Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr 110:9–14

    CAS  PubMed  Google Scholar 

  96. Esteban J, Morcillo JE, Cortjo J (1999) Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res 40:393–404

    Google Scholar 

  97. Boda D, Nemeth I, Pinter S (1998) Surface tension, glutathione content and redox ratio of the tracheal aspirate fluid of premature infants with IRDS. Biol Neonate 74:281–288

    CAS  PubMed  Google Scholar 

  98. Ikegami M, Kallapur S, Michna J et al (2000) Lung injury and surfactant metabolism after hyperventilation of premature lambs. Pediatr Res 47:398–404

    CAS  PubMed  Google Scholar 

  99. Huertas JR, Palomino N, Ochoa JJ (1998) Lipid peroxidation and antioxidant erythrocyte membranes of full-term and preterm newborns. Biofactors 8:133–137

    CAS  PubMed  Google Scholar 

  100. Miller NJ, Rice-Evans C, Davies MJ et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 84:407–412

    CAS  Google Scholar 

  101. Ogihara T, Okamoto R, Kim HS (1996) New evidence for the involvement of oxygen radicals in triggering neonatal chronic lung disease. Pediatr Res 39:117–119

    CAS  PubMed  Google Scholar 

  102. Bridges JP, Davis HW, Damodarasamy M (2000) Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem 275:38848–38855

    CAS  PubMed  Google Scholar 

  103. Dani C, Buonocore G, Longini M (2009) Superoxide dismutase and catalase activity in naturally derived commercial surfactants. Pediatr Pulmonol 44:1125–1131

    PubMed  Google Scholar 

  104. Kothecha S (2000) Lung growth: implication for the newborn infant. Arch Dis Child Fetal Neonatal Ed 82:F69–F74

    Google Scholar 

  105. Banks BA, Ischiropoulos H, McClelland M (1998) Plasma 3- nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia. Pediatrics 101:870–874

    CAS  PubMed  Google Scholar 

  106. Dellinger RP (1999) Inhaled nitric oxide in acute lung injury and acute respiratory distress syndrome. Inability to translate physiologic benefit to clinical outcome benefit in adult clinical trials. Intens Care Med 25:881–883

    CAS  Google Scholar 

  107. Lamb NJ, Gutteridge JMC, Baker C (1999) Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration and chlorination. Intens Care Med 25:1738–1744

    Google Scholar 

  108. Singh SK, Tandon A, Kumari S et al (1998) Changes in antioxidant enzymes and lipid peroxidation in hyaline membrane disease. Indian J Pediatr 65:609–614

    CAS  PubMed  Google Scholar 

  109. Buss IH, Darlow BH, Winterbourn CC (2000) Elevated protein carbonyls and lipid peroxidation products correlating with myeloperoxidase in tracheal aspirates from premature infants. Pediatr Res 47:640–645

    CAS  PubMed  Google Scholar 

  110. Schock BC, Sweet DG, Halliday HL et al (2001) Oxidative stress in lavage fluid of preterm infants at risk of chronic lung disease. AJP Lung Physiol 281:1386–1391

    Google Scholar 

  111. Gladstone IM, Levine RL (1994) Oxidation of proteins in neonatal lungs. Pediatrics 93:764–768

    PubMed  Google Scholar 

  112. Winterbourn CC, Chan T, Buss IH et al (2000) Protein carbonyls and lipid peroxidation products as oxidation markers in preterm infant plasma: association with chronic lung disease and retinopathy and effects of selenium supplementation. Pediatr Res 48:84–90

    CAS  PubMed  Google Scholar 

  113. Carty JL, Bevan R, Waller H (2000) The effects of Vitamin C supplementation on protein in healthy volunteers. Biochem Res Com 273:729–735

    CAS  Google Scholar 

  114. Levine RL, Williams JA, Stadtman ER et al (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    CAS  PubMed  Google Scholar 

  115. Joung KE, Kim HS, Lee J et al (2011) Correlation of urinary inflammatory and oxidative stress markers in very low birth weight infants with brochopulmonary dysplasia. Free Radic Res 45:1024–1032

    CAS  PubMed  Google Scholar 

  116. Sharda B (2006) Free radical – emerging challenge in environmental health research in childhood and neonatal disorders. Int J Environ Res Public Health 3:286–291

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Gitto E, Reiter RJ, Karbownik M et al (2001) Respiratory distress syndrome in the newborn: role of oxidative stress. Intensive Care Med 27:1116–1123

    CAS  PubMed  Google Scholar 

  118. Warren R, Luzminda C (1986) Endogenous antioxidant defenses in neonates. J Free Radic Biol Med 2:295–298

    Google Scholar 

  119. Schroder A, Herting E, Speer CP (1999) Superoxide dismutase and catalase activity in tracheobronchial secretions after surfactant treatment of newborn infants with respiratory distress syndrome. Z Geburtshilfe Neonatol 203:201–206

    CAS  PubMed  Google Scholar 

  120. Lavoie JC, Chessex P (1997) Gender and maturation affect glutathione status in human neonatal tissues. Free Rad Biol Med 23:648–657

    CAS  PubMed  Google Scholar 

  121. Asikainen TM, Raivio KO, Saksela M et al (1998) Expression and developmental profile of antioxidant enzymes in human lung and liver. Am J Respir Cell Mol Biol 19:942–949

    CAS  PubMed  Google Scholar 

  122. Zachman RD (1989) Retinol (vitamin A) and the neonate: special problems of the human premature infant. Am J Clin Nutr 50:413–424

    CAS  PubMed  Google Scholar 

  123. Simon C, Kiosz D, Hofman I (1980) Serum concentration of vitamin E in healthy infants fed commercial milk. Eur J Pediatr 133:273–276

    CAS  PubMed  Google Scholar 

  124. Coleman M, Thompson TR (1979) A possible role of vitamin E in the prevention or amelioration of bronchopulmonary dysplasia. Am J Pediatr Hematol Oncol 1:175–178

    CAS  PubMed  Google Scholar 

  125. Huijbers WA, Schrijver J, Speek AJ et al (1986) Persistent low plasma vitamin E levels in premature infants surviving respiratory distress syndrome. Eur J Pediatr 145:170–171

    CAS  PubMed  Google Scholar 

  126. Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 86:6377–6381

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Niki E (1987) Interaction of ascorbate and α-tocopherol. Ann NY Acad Sci 498:186–199

    CAS  PubMed  Google Scholar 

  128. Mathews F, Yudkin P, Neil A (1999) Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 319:339–343

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Wiedemann M, Kontush A, Finckh B (2003) Neonatal blood plasma is less susceptible to oxidation than adult plasma owing to its higher content of bilirubin and lower content of oxidizable fatty acids. Pediatr Res 53:843–849

    CAS  PubMed  Google Scholar 

  130. Yeung MY (2006) Influence of early postnatal nutritional management on oxidative stress and antioxidant defence in extreme prematurity. Acta Pediatr 95:153–163

    Google Scholar 

  131. White CW, Stabler SP, Allen RH (1994) Plasma cysteine concentrations in infants with respiratory distress. J Pediatr 125:769–777

    CAS  PubMed  Google Scholar 

  132. Abbe LM, Friel JK (2000) Superoxide dismutase and glutathione peroxidase content of human milk from mothers of premature and full term infants during the first 3 months of lactation. J Pediatr Gastroenterol Nutr 31:270–274

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari D. Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Negi, R., Pande, D., Karki, K., Kumar, A., Khanna, R.S., Khanna, H.D. (2015). Oxidative Stress in Low Birth Weight Newborns. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_15

Download citation

Publish with us

Policies and ethics