Skip to main content

Thyroid Gland in Free Radical-Induced Oxidative Stress

  • Chapter
  • First Online:
Free Radicals in Human Health and Disease

Abstract

This oxidative stress has been implicated in a variety of pathological conditions such as diabetes mellitus, inflammation, cancer, ageing, ischemia, atherosclerosis, liver damage, etc. The present study revealed that all the stressors invariably increase oxidative stress in all the tissues as evident from the markers of oxidative stress, i.e., LPO, SOD, CAT, and GSH, in various tissues like blood, muscle, and liver. It was also found that chemical stress produces maximum oxidative stress as compared to physiological and psychological stress. Similarly, changes in the markers of oxidative stress in blood parallel with changes in muscle and liver. In all the stressed conditions, there was an increase in T3 and T4 and decrease in TSH. There was a concurrent increase in LPO and decrease in the SOD and CAT activity and reduction in the reduced glutathione content in blood. The data on oxidative stress and blood levels of thyroid hormones T3 and T4 condition exhibited a linear correlation. The changes in thyroid hormone levels correlate with the parameters of oxidative stress. Hence, it can be contemplated that thyroid hormones may play a pivotal role in the induction of oxidative stress in stress-exposed subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behan DP, Grigoriadis DE, Lovenberg T et al (1996) Neurobiology of corticotropin releasing factors (CRH) receptors and CRH-binding protein: implications for the treatment of CNS disorders. Mol Psychol 1:265–277

    CAS  Google Scholar 

  2. lsboer F, Bardan N (1996) Antidepressant and hypothalamic pituitary adrenocortical regulation. Endocr Rev 17:187–205

    Article  Google Scholar 

  3. Reagon LP, Magarinos AM, McEwen BS (1999) Neurological changes induced by stress in streptozotocin diabetic rats. Ann N Y Acad Sci 893:126–137

    Article  Google Scholar 

  4. Pekarkova I, Parara S, Holecek V et al (2001) Does exogenous melatonin influences the free radicals metabolism and pain sensation in rat? Physiol Res 50(6):595–602

    CAS  PubMed  Google Scholar 

  5. Mileva M, Bekalova R, Tancheva l et al (2002) Effect of immobilization, cold and cold restraint stress on liver monooxygenase activity and lipid peroxidation of influenza virus – infected mice. Arch Toxicol 76(2):96–103

    Article  CAS  PubMed  Google Scholar 

  6. Gupta YK, Sharma M, Chaudhari G (2002) Pyrogallol-induced hepatotoxicity in rats: a model to evaluate antioxidant hepatoprotective agents. Exp Clin Pharmacol 24(8):497–500

    CAS  Google Scholar 

  7. Fiers W, Beyaert R, Declercq W et al (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    Article  CAS  PubMed  Google Scholar 

  8. Nicolas MG, Fujiki K, Murayama K et al (1996) Exp Eye Res 62:399–408

    Article  CAS  PubMed  Google Scholar 

  9. Hayes JD (1999) Glutathione and glutathione-dependent enzymes represent a coordinately regulated defense against oxidative stress. Free Radic Res 31:273–300

    Article  CAS  PubMed  Google Scholar 

  10. Cheesseman KH, Slater TF (1993) Free radicals in medicine. Br Med Bull 49:481–491

    Google Scholar 

  11. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  12. Guerrero A, Pamplona R, Postero-Otin M et al (1999) Effect of thyroid status on lipid composition and peroxidation in the mouse liver. Free Radic Biol Med 26:73–80

    Article  CAS  PubMed  Google Scholar 

  13. Freeman BA, Crapo JD (1982) Biology of disease, free radicals and tissue injury. Lab Invest 47:412–426

    CAS  PubMed  Google Scholar 

  14. Mates JM, Perez-Gomez C, Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  CAS  PubMed  Google Scholar 

  15. Hauck JS, Bartke A (2000) Effects of growth hormone on hypothalamic CAT and Cu/Zn superoxide dismutase. Free Radic Biol Med 28:970–978

    Article  CAS  PubMed  Google Scholar 

  16. Baker S, Klitgaar HM (1952) Metabolism of tissues excised from thyroxine-injected rats. Am J Physiol 170:81–86

    Google Scholar 

  17. Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  CAS  PubMed  Google Scholar 

  18. Moreno M, Lombardi A, Beneduce L et al (2002) Are the effects of T3 on resting metabolic rate in euthyroid rats entirely caused by T3 itself? Endocrinology 143:504–510

    Article  CAS  PubMed  Google Scholar 

  19. Goglia F, Moreno M, Lanni A (1999) Actions of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett 452:115–120

    Article  CAS  PubMed  Google Scholar 

  20. Ram PA, Waxman DJ (1992) Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. J Biol Chem 267:3294–3301

    CAS  PubMed  Google Scholar 

  21. Soboll S (1993) Thyroid hormone action on mitochondrial energy transfer. Biochim Biophys Acta 1144:1–6

    Article  CAS  PubMed  Google Scholar 

  22. Videla LA (2000) Energy metabolism, thyroid calorigenesis, and oxidative stress: functional and cytotoxic consequences. Redox Rep 5:265–275

    Article  CAS  PubMed  Google Scholar 

  23. Lanni A, Moreno M, Lombardi A et al (2003) Thyroid hormone and uncoupling proteins. FEBS Lett 543:5–10

    Article  CAS  PubMed  Google Scholar 

  24. Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed Engl 25:1058–1071

    Article  Google Scholar 

  25. Videla LA, Ferna’ndez V, Carrio’n Y (1995) Biochemical mechanisms in hepatotoxicity: oxidative stress induced by xenobiotics and hormonal changes. J Braz Assoc Adv Sci 47:385–394

    CAS  Google Scholar 

  26. Jaeschke H, Gores GJ, Cederbaum AI et al (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176

    Article  CAS  PubMed  Google Scholar 

  27. Cutler RG (1985) Peroxide-producing potential of tissues: correlation with longevity of mammalian species. Proc Natl Acad Sci U S A 87:1620–1624

    Google Scholar 

  28. Ferna’ndez V, Barrientos X, Kipreos K et al (1985) Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation. Endocrinology 117:496–501

    Article  Google Scholar 

  29. Ferna’ndez V, Videla LA (1993) Influence of hyperthyroidism on superoxide radical and hydrogen peroxide production by rat liver submitochondrial particles. Free Radic Res Commun 18:329–335

    Article  Google Scholar 

  30. Ferna’ndez V, Videla LA (1993) 3,3,5-Triiodothyronine-induced hepatic respiration: effects of desferrioxamine and allopurinol in the isolated perfused rat liver. Toxicol Lett 69:205–210

    Article  Google Scholar 

  31. Venditti P, De Rosa R, Di Meo S (2003) Effect of thyroid state on H2O2 production by rat liver mitochondria. Mol Cell Endocrinol 205:185–192

    Article  CAS  PubMed  Google Scholar 

  32. Venditti P, De Rosa R, Di Meo S (2004) Effect of cold-induced hyperthyroidism on H2O2 production and susceptibility to stress conditions of rat liver mitochondria. Free Radic Biol Med 36:348–358

    Article  CAS  PubMed  Google Scholar 

  33. Tata JR, Ernster L, Lindberg O (1962) Control of basal metabolic rate by thyroid hormones and cellular function. Nature 193:1058–1060

    Article  CAS  PubMed  Google Scholar 

  34. Goeptar AR, Scheerens H, Vermeulen NPE (1995) Oxygen and xenobiotic reductase activities of cytochrome P450. Crit Rev Toxicol 25:25–65

    Article  CAS  PubMed  Google Scholar 

  35. Ferna’ndez V, Massa L, Quin˜ones L et al (2003) Effects of g-hexachlorocyclohexane and l-3,3V,5-triiodothyronine on rat liver cytochrome P4502E1-dependent activity and content in relation to microsomal superoxide radical generation. Biol Res 36:359–365

    Google Scholar 

  36. Simon-Giavarotti KA, Giavarotti L, Gomes LF et al (2002) Enhancement of lindane-induced liver oxidative stress and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radic Res 36:1033–1039

    Article  CAS  PubMed  Google Scholar 

  37. Ferna’ndez V, Llesuy S, Solari L et al (1988) Chemiluminescent and respiratory responses related to thyroid hormone-induced liver oxidative stress. Free Radic Res Commun 5:77–84

    Article  Google Scholar 

  38. Ferna’ndez V, Simizu K, Barros SBM et al (1991) Effects of hyperthyroidism on rat liver glutathione metabolism: related enzymes, activities, efflux, and turnover. Endocrinology 129:85–91

    Article  Google Scholar 

  39. Huh K, Kwon TH, Kim JS et al (1998) Role of the hepatic xanthine oxidase in thyroid dysfunction: effect of thyroid hormones in oxidative stress in rat liver. Arch Pharm Res 21:236–240

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez V, Cornejo P, Tapia G et al (1997) Influence of hyperthyroidism on the activity of liver nitric oxide synthase in the rat. Nitric Oxide Biol Chem 1:463–468

    Article  CAS  Google Scholar 

  41. Tapia G, Pepper I, Smok G et al (1997) Kupffer cell function in thyroid hormone-induced liver oxidative stress in the rat. Free Radic Res 26:267–279

    Article  CAS  PubMed  Google Scholar 

  42. Wang JF, Komarov P, de Groot H (1993) Luminol chemiluminescence in rat macrophages and granulocytes: the role of NO, O2_/H2O2, and HOCl. Arch Biochem Biophys 304:189–196

    Article  CAS  PubMed  Google Scholar 

  43. Videla LA, Correa L, Rivera M et al (1993) Zymosan-induced luminol-amplified chemiluminescence of whole blood phagocytes in experimental and human hyperthyroidism. Free Radic Biol Med 14:669–675

    Article  CAS  PubMed  Google Scholar 

  44. Fernandez V, Llesuy S, Solari L et al (1988) Chemiluminescence and respiratory responses related to thyroid hormone-induced liver oxidative stress. Free Radic Res Commun 5:77–84

    Article  CAS  PubMed  Google Scholar 

  45. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  46. Fernandez V, Videla LA (1996) Effect of hyperthyroidism on the biliary release of thiobarbituric acid reactants in the rat. Toxicol Lett 84:149–153

    Article  CAS  PubMed  Google Scholar 

  47. Venditti P, Balestrieri M, Meo S et al (1997) Effect of thyroid state on lipid peroxidation, antioxidant defences and susceptibility to oxidative stress in rat tissues. J Endocrinol 155:151–157

    Article  CAS  PubMed  Google Scholar 

  48. Marzoev AI, Kozlov AV, Andryushchenko AP et al (1982) Activation of lipid peroxidation in liver mitochondria of hyperthyroid rabbits. Bull Exp Biol Med 93:269–272

    Article  Google Scholar 

  49. Andican G, Gelisgen R, Civelek S et al (2004) Oxidative damage to nuclear DNA in hyperthyroid rat liver: inability of vitamin C to prevent the damage. J Toxicol Environ Health 67:413–420

    Article  CAS  Google Scholar 

  50. Videla LA, Sir T, Wolff C (1988) Increased lipid peroxidation in hyperthyroid patients: suppression by propylthiouracil treatment. Free Radic Res Commun 5:1–10

    Article  CAS  PubMed  Google Scholar 

  51. Seven R, Gelisgen R, Seven A et al (2001) Influence of propylthiouracil treatment on oxidation stress and nitric oxide in Basedow diseases. Toxic Environ Health A 62:495–503

    Article  CAS  Google Scholar 

  52. Bianchi G, Solaroli E, Zaccheroni V et al (1999) Oxidative stress and anti-oxidant metabolites in patients with hyperthyroidism: effect of treatment. Horm Metab Res 31:620–624

    Article  CAS  PubMed  Google Scholar 

  53. Sewerynek J, Wiktorska J, Nowak D et al (2000) Methimazole protection against oxidative stress induced by hyperthyroidism in Graves disease. Endocr Regul 34:83–89

    CAS  PubMed  Google Scholar 

  54. Komosinska-Vessev K, Olczyk K, Kucharz EJ et al (2000) Free radical activity and antioxidant defense mechanisms in patients with hyperthyroidism due to Graves’ disease during therapy. Clin Chim Acta 300:107–117

    Article  Google Scholar 

  55. Guerra LN, Moiguer S, Karner M et al (2001) Antioxidants in the treatment of Graves disease. IUBMB Life 51:105–109

    Article  CAS  PubMed  Google Scholar 

  56. Yavuz DG, Yuksel M, Deyneli O et al (2004) Association of serum paraoxonase activity with insulin sensitivity and oxidative stress in hyperthyroid and TSH-suppressed nodular goiter patients. Clin Endocrinol 61:515–521

    Article  CAS  Google Scholar 

  57. Bednarek J, Wysocki H, Sowinski J (2004) Oxidation products and antioxidant markers in plasma of patients with Graves, disease and toxic multinodular goiter: effect of methimazole treatment. Free Radic Res 38:659–664

    Article  CAS  PubMed  Google Scholar 

  58. Wilson R, Chopra M, Bradley H et al (1989) Free radicals and Graves, disease: the effect of therapy. Clin Endocrinol 30:429–433

    Article  CAS  Google Scholar 

  59. Lissi EA, Salim-Hanna M, Sir T et al (1992) Is spontaneous urinary visible chemiluminescence a reflection of in vivo oxidative stress? Free Radic Biol Med 12:317–322

    Article  CAS  PubMed  Google Scholar 

  60. McCord JM, Fridovich I (1969) Superoxide dismutase, an enzymic function of erythrocuprein. J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  61. Asayama K, Kato K (1990) Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med 8:293–303

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez V, Videla LA (1989) Thyroid hormone, active oxygen, and lipid peroxidation. In: Miquel J, Quintanilha AT, Weber H (eds) Handbook of free radicals and antioxidants in biomedicine. CRC Press Inc., Boca Raton, pp 105–115

    Google Scholar 

  63. Pereira B, Rosa LF, Safi DA et al (1994) Control of superoxide dismutase, CAT and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones. J Endocrinol 140:73–77

    Article  CAS  PubMed  Google Scholar 

  64. Paller MS (1986) Hypothyroidism protects against free radical damage in ischemic acute renal failure. Kidney Int 29:1162–1166

    Article  CAS  PubMed  Google Scholar 

  65. Dumitriu L, Bartoc R, Ursu H et al (1988) Significance of high levels of serum malonyl dialdehyde and ceruloplasmin in hyper- and hypothyroidism. Endocrinology 26:35–38

    CAS  PubMed  Google Scholar 

  66. Yilmaz S, Ozan S, Benzer F et al (2003) Oxidative damage and antioxidant enzyme activities in experimental hypothyroidism. Cell Biochem Funct 21(4):325–330

    Article  CAS  PubMed  Google Scholar 

  67. Costantini F, Pierdomenico SD, De Cesare D (1998) Effect of thyroid function on LDL oxidation. Arterioscler Thromb Vasc Biol 18:732–737

    Article  CAS  PubMed  Google Scholar 

  68. Aviram M, Rosenblat M, Bisgaier CL et al (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: a possible peroxidative role for paraoxonase. J Clin Invest 101:1581–1590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rozenberg O, Rosenblat M, Coleman R et al (2003) Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic Biol Med 34:774–784

    Article  CAS  PubMed  Google Scholar 

  70. Ayub A, Mackness MI, Arrol S et al (1999) Serum paraoxonase after myocardial infarction. Arterioscler Thromb Vasc Biol 19:330–335

    Article  CAS  PubMed  Google Scholar 

  71. Mackness MI, Harty D, Bhatnagar D et al (1991) Serum paraoxonase activity in familial hypercholesterolaemia and insulin dependent diabetes mellitus. Atherosclerosis 86:193–199

    Article  CAS  PubMed  Google Scholar 

  72. Burton GW, Traber MG (1990) Vitamin E: antioxidant activity, bio-kinetics, and bioavailability. Annu Rev Nutr 10:357–382

    Article  CAS  PubMed  Google Scholar 

  73. Chow CK (1991) Vitamin E and oxidative stress. Free Radic Biol Med 1:215–232

    Article  Google Scholar 

  74. Seven A, Seymen O, Hatemi S et al (1996) Antioxidant status in experimental hyperthyroidism: effect of vitamin E supplementation. Clin Chim Acta 256:65–74

    Article  CAS  PubMed  Google Scholar 

  75. Asayama K, Dobashi K, Hayashibe H et al (1987) LPO and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology 121:2112–2118

    Article  CAS  PubMed  Google Scholar 

  76. Steinberg D, Parthasarathy S, Carew TE et al (1989) Beyond cholesterol: modifications of low density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  CAS  PubMed  Google Scholar 

  77. Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med 9:155–168

    Article  CAS  PubMed  Google Scholar 

  78. Weetman AP, Tandon N, Morgan BP (1992) Antithyroid drugs and release of inflammatory mediators by complement attacked thyroid cells. Lancet 340:633–636

    Article  CAS  PubMed  Google Scholar 

  79. Nishiki K, Ericinska M, Wilson DF et al (1978) Evaluation of oxidative phosphorylation in hearts from euthyroid, hypothyroid and hyperthyroid rats. Am J Physiol 235:C212–C219

    CAS  PubMed  Google Scholar 

  80. Schwartz HL, Oppenheimer JH (1978) Physiologic and biochemical actions of thyroid hormone. Pharmacol Ther 3:349–376

    CAS  Google Scholar 

  81. Swaroop A, Ramasarma T (1985) Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria. Biochem J 226:403–408

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Mano T, Sinohora R, Sawai Y et al (1995) Changes in lipid peroxidation and free radicals scavengers in the brain of hyper and hypothyroid aged rats. J Endocrinol 147:361–365

    Article  CAS  PubMed  Google Scholar 

  83. Morini P, Casalino E, Sblano C et al (1991) The response of rat liver lipid peroxidation, antioxidant enzyme activities and glutathione concentration to the thyroid hormone. Int J Biochem 23:1025–1030

    Article  CAS  PubMed  Google Scholar 

  84. Heufelder AE, Wenzel BE, Bahn RS (1992) Methimazole and propylthiouracil inhibit the oxygen free radical-induced expression of a 72 kilodalton heat shock protein in Graves’ retroocular fibroblasts. J Clin Endocrinol Metab 40:720–723

    Google Scholar 

  85. Hicks M, Wong LS, Day RO (1992) Antioxidant activity of propylthiouracil. Biochem Pharmacol 4:439–444

    Article  Google Scholar 

  86. Sewerynek E, Wiktorska J, Lewinski A (1999) Effect of melatonin on the oxidative stress induced by thyrotoxicosis in rats. Neuroendocrinology 20:157–161

    Article  CAS  Google Scholar 

  87. Karel P, Miklos P (2001) Stressor specifically of central neuroendocrine responses: implication of stress related disorders. Endocr Rev 224:502–548

    Google Scholar 

  88. Karbowni KM, Lewinski A (2003) The role of oxidative stress in physiological and pathological processes in the thyroid gland, possible involvement in pineal-thyroid interaction. Neuroendocrinol Lett 24:293–303

    Google Scholar 

  89. Mogulkoc R, Baltaci AK, Aydin L et al (2005) Short term administration leads LPO in renal and testicular tissues of rats with hypothyroidism. Acta Biol Hung 56:225–232

    Article  CAS  PubMed  Google Scholar 

  90. Mogulkoc R, Baltaci AK, Aydin L et al (2005) The effect of thyroxine administration on LPO in different tissues of rats with hypothyroidism. Acta Physiol Hung 92:39–46

    Article  CAS  PubMed  Google Scholar 

  91. Owen MJ, Nemeroff CP (1991) Physiology and pharmacology of corticotropin releasing factor. Pharmacol Rev 43:425–473

    Google Scholar 

  92. Umathe SN, Kale MK, Bhusari KP (2006) Oxidative stress and the thyroid, positive health Portsmouth, London UK 119:24–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan K. Kale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kale, M.K. (2015). Thyroid Gland in Free Radical-Induced Oxidative Stress. In: Rani, V., Yadav, U. (eds) Free Radicals in Human Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2035-0_12

Download citation

Publish with us

Policies and ethics