Recent Advances in Enzyme Replacement Therapy for Lysosomal Diseases

  • Kohji Itoh


Lysosomal diseases are inherited metabolic disorders caused by gene defects of lysosomal enzymes and their cofactors, which are characterized by the accumulation of undegraded natural substrates, including glycoconjugates, in lysosomes. The patients develop quite heterogeneous and progressive manifestations, and most of them involve neurological symptoms. In recent years, enzyme replacement therapy (ERT) with recombinant lysosomal enzymes has been clinically available for several non-neurological diseases, such as Gaucher disease type 1, Fabry disease cardiac type, and Pompe disease, on the basis of the endocytotic mechanism through binding of the mannose-6-phosphate- and mannose residues-containing oligosaccharides attached to lysosomal enzymes to the cation-independent mannose-6-phosphate receptor (CI-M6PR) and mannose receptor (MR) as molecular targets in visceral organs of the patients as well as delivery to lysosomes. However, two major problems are present in the clinical application of the ERT for lysosomal diseases. One is the difficulty in producing a large amount of recombinant human enzymes inexpensively. The other is the inefficiency for neurological diseases because intravenously administered enzymes cannot be incorporated into the central nervous system (CNS) across the blood-brain barrier (BBB).


Enzyme Replacement Therapy Fabry Disease Pompe Disease Methylotrophic Yeast Sandhoff Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Itakura T, Kuroki A, Ishibashi Y, Tsuji D, Kawashita E, Higashine Y, Sakuraba H, Yamanaka S, Itoh K (2006) Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice. Biol Pharm Bull 29:1564–1569PubMedCrossRefGoogle Scholar
  2. Murata-Ohsawa M, Kotani M, Tajima Y, Tsuji D, Ishibashi Y, Kuroki A, Itoh K, Watabe, K, Sango K, Yamanaka S, Sakuraba H (2005) Establishment of immortalized Schwann cells from Sandhoff mice and corrective effect of recombinant human β-hexosaminidase A on the accumulated GM2 ganglioside. J Hum Genet 50:460–467CrossRefGoogle Scholar
  3. Sakuraba H, Sawada M, Matsuzawa F, Aikawa S, Chiba Y, Jigami Y, Itoh K (2006) Molecular pathologies and enzyme replacement therapies for lysosomal diseases. Curr Drug Targets Cent Nerv Syst Neurol Disord 5:401–413CrossRefGoogle Scholar
  4. Tsuji D, Kuroki A, Ishibashi Y, Itakura T, Itoh K (2005) Metabolic correction in microglia derived from Sandhoff disease model mice. J Neurochem 94:1631–1638PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kohji Itoh
    • 1
    • 2
  1. 1.Department of Medicinal Biotechnology, Graduate School of Pharmaceutical SciencesThe University of TokushimaTokushimaJapan
  2. 2.CREST, JSTTokyoJapan

Personalised recommendations