Skip to main content

Molecular mechanism of visceral obesity

  • Conference paper
Lipoprotein Metabolism and Atherogenesis

Summary

Visceral fat obesity or visceral fat syndrome coincides with syndrome X or deadly quartet, which is susceptible to atherosclerosis with the clustering of multiple risk factors. Visceral fat is located upstream of the liver via the portal vein. Numerous free fatty acids released from visceral fat are drained into the liver and enhance expression of the genes for lipoprotein synthesis, leading to hyperlipemia. Visceral fat expresses numerous genes for secretory proteins including various bioactive substances. We proposed naming these adipocyte-derived bioactive substances ‘adipocytokines’ One of the examples, plasminogen activator inhibitor-1 gene, is overexpressed in accumulated visceral fat, which may be involved in thrombotic disorders in visceral obesity. A newly found adipose-specific secretory protein, adiponectin, having a collagen-like motif may be related to vascular disorders. Adipocytokines may be a causative factor in the development of atherosclerotic disease in visceral obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vague J, Björntorp P, Guy-Grand B, Rebuffé-Scrive M, Vague P, eds (1985) Metabolic complications of human obesities. Elsevir, Amsterdam

    Google Scholar 

  2. Tarui S, Tokunaga K, Fujioka S, Matsuzawa Y (1991) Visceral fat obesity: anthropological and pathophysiological aspects. Intern. J. Obesity 15: (suppl.2) 1–8

    Google Scholar 

  3. Vague J (1947) La différenciation sexuelle facteur determinant des forme de lóbesité. Presse Med. 30: 339–340

    Google Scholar 

  4. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, Adams PW (1982) Relation of body fat. distribution to metabolic complications of obesity. J. Clin Endocrinol Metab. 54: 254–260

    Article  PubMed  CAS  Google Scholar 

  5. Tokunaga T, Matsuzawa Y, Ishikawa K, Tarui S (1983) A novel technique for the determination of body fat by computed tomography. Int. J. Obesity. 7: 437–445

    CAS  Google Scholar 

  6. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra — abdominal fat accumulation to the impairment of glucose and lipid metabolism. Metabolism. 36: 54–59

    Article  PubMed  CAS  Google Scholar 

  7. Matsuzawa Y, Fujioka S, Tokunaga K, Tarui S (1987) A novel classification: visceral fat obesity and subcutaneous fat obesity. In: Berry EM, Blondheim SH, Shafrir E (eds) Recent Advances in Obesity Research V. John Libbey &Co. Ltd., London, pp92–96

    Google Scholar 

  8. Nakajima T, Fujioka S, Tokunaga K, Matsuzawa Y, Tarui S (1989) Correlation of intraabdominal fat accumulation and left ventricular performance in obesity. Am. J. Cardiol. 64: 369–373

    Article  PubMed  CAS  Google Scholar 

  9. Kanai H, Matsuzawa Y, Kotani K, Keno Y, Kobatake T, Nagai Y, Fujioka S, Tokunaga K, Tarui S (1990) Close correlation of intraabdominal fat accumulation to hypertension in obese women. Hypertension 16: 484–490

    PubMed  CAS  Google Scholar 

  10. Kanai H, Tokunaga K, Fujioka S, Yamashita S, Kameda-Takemura K, Matsuzawa, Y (1996) Decrease in intraabdominal visceral fat may reduce blood pressure in obese hypertensive women. Hypertension 27: 125–129

    PubMed  CAS  Google Scholar 

  11. Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y, Tarui S (1988) Comparison of a novel classification of obesity (visceral fat obesity and subcutaneous fat obesity) with previous classification of obesity concerning body features or adipose tissue cellularity. In: Björntorp P, Rössner S (eds) Obesity in Europe 88.John Libhey, London pp85–89

    Google Scholar 

  12. Deprés JP (1991) Obesity and lipid metabolism: relevance of body fat distribution. Curr. Cop. Lipidol. 2: 5–15

    Article  Google Scholar 

  13. Kissebah A. H., Peiris, A. N (1989) Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diab. Metab. Rev. 5: 83–109

    Article  CAS  Google Scholar 

  14. Matsuzawa Y (1995) Insulin resistance and atherosclerosis. In Diabetes Mellitus, Obesity and Hyperlipidemia. In: Matsuzawa Y, Akanuma Y (eds) Proceedings of Satellite Symposium to 15th International Diabetes Federation Congress. Axel Springer, Japan Tokyo, pp1–6

    Google Scholar 

  15. Matsuzawa Y, Shimomura, I, Nakamura T, Keno Y, Kotani K, Tokunaga K (1995) Pathophysiology and pathogenesis of visceral fat obesity. Obesity Res. 3: 187–193S

    Google Scholar 

  16. Reaven G. M. Hoffman B. B (1987) A role for insulin in aetiology and course of hypertension. Lancet ii, 435–437

    Article  Google Scholar 

  17. Kaplan. N. M (1989) The deadly quartet. Arch. Intern. Med. 149: 1514–1520

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, Islam, A. H. M. W., Keno Y, Kobatake T, Nagai Y, Fujioka S, Tarui S, Matsuzawa Y (1994) Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis. 107: 239–246

    Article  PubMed  CAS  Google Scholar 

  19. Kotani K, Tokunaga K, Fujioka S, Kobatake T, Keno Y, Yoshida S, Shimomura I, Tarui S, Matsuzawa Y (1994) Sexual dimorphism of age-related changes in whole body fat distribution in the obese. Int. J. Obes. 18: 207–212

    CAS  Google Scholar 

  20. Keno Y, Matsuzawa Y, Tokunaga K, Fujioka S, Kawamoto T, Kobatake T, Tarui S (1991) High sucrose diet increases visceral fat accumulation in VMH-lesioned obese rats. Int. J. Obes. 15: 205–211

    PubMed  CAS  Google Scholar 

  21. Kobatake T, Matsuzawa Y, Tokunaga K, Fujioka S, Kawamoto T, Keno Y, Inui Y, Odaka H, Matsuo T, Tarui S (1989) Metabolic improvements associated with a reduction of abdominal visceral fat caused by a new α-glucosidase inhibitor in Zucker fatty rats. Int. J. Obes. 13: 147–154

    PubMed  CAS  Google Scholar 

  22. Rubuffé-Scrive M, Anderson B, Olbe P, Björntorp, P (1990) Metabolism of adipose tissue in intraabdominal depot in severely obese men and women, Metabolism 39: 1021–1025

    Google Scholar 

  23. Shimomura I, Tokunaga K, Jiao, S., Funahashi Y, Keno Y, Kobatake K, Suzuki H, Yamamoto T, Tarui S, Matsuzawa Y (1992) Marked enhancement of acyl-CoA synthetase activity and mRNA, paralleled to lipoprotein lipase mRNA, in adipose tissue of Zucker obese rats (fa/fa) Biochim. Biophys. Acta. 1124: 112–118

    CAS  Google Scholar 

  24. Shimomura I, Funahashi T, Takahashi M, Tokunaga K, Kotani K, Matsuzawa Y (1996) Rapid enhancement of acyl CoA synthetase LPL and Glut 4 mRNA in adipose tissues of VMH rats. Am. J. Phys. 270: E995–1002

    CAS  Google Scholar 

  25. Shimomura I, Tokunaga K, Kotani K, Keno Y, Yanase-Fujiwara M, Kanosue K, Jiao S, Funahashi T, Kobatake T, Yamamoto T, Matsuzawa Y (1993) Marked reduction of acyl-CoA synthetase activity and mRNA in intra-abdominal visceral fat by physical exercise. Am. J. Physiol. 265: E44-E50

    Google Scholar 

  26. Kuriyama H, Yamashita S, Shimomura I, Funahashi T, Ishigami M, Aragane K, Miyaoka K, Nakamura T, Takemura K, Man Z, Toide K, Nakayama N, Fukuda Y, Lin MC, Wetterau JR, Matsuzawa Y (1998) Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology 27: 557–62

    Article  PubMed  CAS  Google Scholar 

  27. Funahashi T, Shimomura I, Hiraoka H, Maeda K, Matsuzawa Y (1995) Enhanced expression of rat obese (Ob) gene in adipose tissues of ventromedial hypothalamus (VMH)-lesioned rats. Biochim. Biophys. Res. Commun. 211: 469–475

    Article  CAS  Google Scholar 

  28. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y (1996) Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Med. 2: 800–802

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this paper

Cite this paper

Matsuzawa, Y., Funahashi, T., Nakamura, T., Shimomura, I., Arita, Y. (2000). Molecular mechanism of visceral obesity. In: Kita, T., Yokode, M. (eds) Lipoprotein Metabolism and Atherogenesis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68424-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68424-4_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68426-8

  • Online ISBN: 978-4-431-68424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics