Molecular Analysis of the Retinoblastoma (Rb) Gene in Human Colorectal Carcinomas

  • Rajalakshmi Gope
  • Mark A. Christensen
  • Alan Thorson
  • Henry T. Lynch
  • Thomas Smyrk
  • Mohan L. Gope
  • Bruce M. Boman


We have examined the structure and expression of the Rb gene on chromosome 13 in matched pairs of normal and malignant colonic tissues from 68 patients. Northern blots showed a normal size 4.7 kb transcript in the 33 normal mucosal tissues and 38 colorectal carcinomas examined. However, increased expression of the Rb gene (2-5 fold) was detected in approximately 70% of colorectal carcinomas relative to normal colonic mucosa. The remaining malignant tissues showed an equal level of Rb specific RNA as compared to normal colonic mucosa and none showed a decrease in hybridization signal. Southern blot analysis of DNA from 45 colorectal carcinomas showed an increase in hydridization intensity (at least two fold) in 20 tumors in comparison to normal mucosa. These results coupled with previous reports of nonrandom chromosome 13 gains in approximately 50% of colorectal carcinomas suggest that an increase in Rb gene copy number occurs frequently in these tumors. Southern blot analysis also shows that none of the colorectal cancers examined had allelic loss at the Rb locus. These results suggest that the Rb gene is not lost or transcriptionally inactivated in colorectal cancers.


Colorectal Carcinoma Familial Adenomatous Polyposis Lynch Syndrome Familial Adenomatous Polyposis Patient Hybridization Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson DH, Ellsworth RM, Kitchin FD, Tung G (1984) Second nonocular tumors in retinoblastoma survivors. Opthalmology 91:1351–1355CrossRefGoogle Scholar
  2. Benedict WF, Fung Y-KT, Murphree AL (1988) The gene responsible for the development of retinoblastoma and osteosarcoma Cancer 62: 1691–1694PubMedCrossRefGoogle Scholar
  3. Boman BM (1988) Biomolecular genetics of cancer. In: Lynch T and Hirayama T (ed) Genetic Epidemiology of Cancer. CRC Press, Inc. Boca Raton, FL, pp 343–349Google Scholar
  4. Bookstein R, Lee EY-HP, To H, Young LJ, Sery TW, Hayes RC, Friedmann T, Lee W-H (1988) Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants. Proc. Natl. Acad. Sci. USA 85:2210–2214PubMedCrossRefGoogle Scholar
  5. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC and White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–783PubMedCrossRefGoogle Scholar
  6. Cleveland DN, Lopata MA, MacDonald RJ, Cowan NJ, Rutter WJ, Kirschner MW (1980) Number and evolutionary conservation of alpha-and beta-tubulin and cytoplasmic beta-and gamma-actin genes using specific cloned cDNA probes. Cell 20:95–105PubMedCrossRefGoogle Scholar
  7. Deschner EE, Lipkin M (1978) Proliferation and differentiation of Gastrointestinal Cells in Health and Disease. In: Lipkin M and Good RA (ed) Gastrointestional Tract Cancer. Plenum Publishing Corp., New York, NYGoogle Scholar
  8. Draper GJ, Sanders BM, Kingston JE (1986) Second primary neoplasms in patients with retinoblastoma. Br. J. Cancer 53:661–671PubMedCrossRefGoogle Scholar
  9. Dryja TP, Rapaport JM, Epstein J, Goorin AM, Weichselbaum R, Koufos A, Cavenee WK (1986) Chromosome 13 homozygosity in osteosarcoma with retinoblastoma. Am. J. Hum. Genet. 38:59–66PubMedGoogle Scholar
  10. Dugaiczyk A, Haron JA, Stone EM, et al (1983) Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde-3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle Biochemistry 22:1605–1613PubMedCrossRefGoogle Scholar
  11. Fearon ER, Hamilton SR, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238:193–197PubMedCrossRefGoogle Scholar
  12. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646PubMedCrossRefGoogle Scholar
  13. Fung Y-KT, Murphree AL, T’Ang A, Qian J, Hinrichs SH, Benedict WF (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–1661PubMedCrossRefGoogle Scholar
  14. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brogger A, Gedde-Dahl T, Cavenee WK (1985) Osteosarcoma and retinoblaqstoma: a shared chromosomal mechanism revealing recessive predisposition. Proc. Natl. Acad. Sci. USA 82:6216–6220PubMedCrossRefGoogle Scholar
  15. Harbour JW, Lai S-L, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ (1988) Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241:353–357PubMedCrossRefGoogle Scholar
  16. Hartley AL, Birch JM, Marsden HB, Harris M (1986) Breast cancer risk in mothers of children with osteosarcoma and chondrosarcoma. Br. J. Cancer 54:819–823PubMedCrossRefGoogle Scholar
  17. Lee WH, Bookstein R, Hong F, Young LJ, Shew J-Y, Lee EY-H (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–1399PubMedCrossRefGoogle Scholar
  18. Lee EY-HP, Bookstein R, Young LJ, Lin CJ, Rosenfeld MG, Lee WH (1988a) Molecular mechanism of retinoblastoma gene inactivation in retinoblastoma cell line Y79. Proc. Natl. Acad. Sci. USA 85:6017–6021PubMedCrossRefGoogle Scholar
  19. Lee EY-HP, To H, Shew J-Y, et al. (1988b) Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:221–281CrossRefGoogle Scholar
  20. Li FP, Fraumeni JF, Jr. (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms a familial syndrome? Ann Intern Med 71:747–752PubMedCrossRefGoogle Scholar
  21. Li FP, Fraumeni JF, Jr. (1982) Prospective Study of a family cancer syndrome. JAMA 247:2692–2694PubMedCrossRefGoogle Scholar
  22. Li FP (1988) Cancer families: Human models of susceptibility to neoplasia-The Richard and Hinda Rosenthal Foundation Award Lecture. Cancer 48:5381–5386Google Scholar
  23. Lundberg C, Skoog L, Cavenee WK, Nordenskjold M (1987) Loss of heterozygosity in human ductal breast tumors indicates a recessive mutation on chromosome 13. Proc. Natl. Acad. Sci. USA 84:2372–2376PubMedCrossRefGoogle Scholar
  24. Lynch HT, Krush AJ, Lemon HM, Kaplan AR, Condit PT, Bottomley RH (1972) Tumor variation in families with breast cancer. JAMA 222:1631–1635PubMedCrossRefGoogle Scholar
  25. Lynch HT, Ens J, Lynch JF, Watson P (1988) Tumor variation in three extended Lynch syndrome II kindreds. Am. J. Gastroenterol 83:741–747PubMedGoogle Scholar
  26. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  27. Muleris M, Salmon R-J, Dutrillaux A-M, Vielh P, Zafrani B, Girodet J, Dutrillaux B (1987) Characteristic chromosomal imbalances in 18 near-diploid colorectal tumors. Cancer Genet. Cytogenet. 29:289–301PubMedCrossRefGoogle Scholar
  28. Muleris M, Salmon RJ, Dutrillaux B (1988) Existence of two distinct processes of chromosomal evolution in near-diploid colorectal tumors Cancer Genet. Cytogenet. 32:43–50CrossRefGoogle Scholar
  29. Murphree AL, Benedict WF (1984) Retinoblastoma: Clues to human oncogenesis. Science 223:1028–1033PubMedCrossRefGoogle Scholar
  30. Reichmann A, Martin P, Levin B (1981) Chromosomal banding patterns in human large bowel cancer. Int. J. Cancer 28:431–440PubMedCrossRefGoogle Scholar
  31. Siegel LI, Bresnick E (1986) Northern hybridization analysis of RNA using diethylpyrocarbonate-treated nonfat milk. Anal. Biochem. 159:82–87PubMedCrossRefGoogle Scholar
  32. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, Lucibello FC, Patel I, Rider SH (1987) Chromosome 5 allele loss in human colorectal carcinomas. Nature 328:616–619PubMedCrossRefGoogle Scholar
  33. Sparkes RS, Murphree AL, Lingua R, Sparkes MC, Field LL, Funderburk SJ, Benedict WF (1983) Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219:971–973PubMedCrossRefGoogle Scholar
  34. T’Ang A, Varley JM, Chakraborty S, et al. (1988) Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 242:263–266PubMedCrossRefGoogle Scholar
  35. Toguchida J, Ishizaki K, Sasaki MS, Ikenaga M, Sugimoto M, Kotoura Y, Yamamuro T (1988) Chromosomal reorganization for the expression of recessive mutation of retinoblastoma susceptibility gene in the development of osteosarcoma. Cancer 48:3939–3943Google Scholar
  36. Vogelstein B, Fearon ER, Kearn SE, et al. (1989) Allelotype of colorectal carcinomas. Science 244:207–211PubMedCrossRefGoogle Scholar
  37. Weichselbaum RR, Beckett M, Diamond A (1988) Some retinoblastomas, osteosarcomas, and soft tissue sarcomas may share a common etiology. Proc. Natl. Acad. Sci. USA 85:2106–2109PubMedCrossRefGoogle Scholar
  38. Wildrick DM, Boman BM (1988) Chromosome 5 allele loss at the glucocorticoid receptor locus in human colorectal carcinomas. Biochem. Biophys. Res. Commun. 150:591–598PubMedCrossRefGoogle Scholar
  39. Yokota J, Wada M, Shimosata Y, et al. (1987) Loss of heterozygosity on chromosome 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. 84:9252–9256PubMedCrossRefGoogle Scholar
  40. Yokota J, Akiyama T, Fung Y-KT, Benedict WF, Namba Y, Hanaoka M, Wada M, Terasaki T, Shimosato Y, Sugimura T, Terada M (1988) Altered expression of the retinoblastoma (Rb) gene in small-cellGoogle Scholar

Copyright information

© Springer Japan 1990

Authors and Affiliations

  • Rajalakshmi Gope
  • Mark A. Christensen
  • Alan Thorson
  • Henry T. Lynch
  • Thomas Smyrk
  • Mohan L. Gope
  • Bruce M. Boman

There are no affiliations available

Personalised recommendations