Advertisement

Molecular Biology

  • Parviz M. Pour
  • Yoichi Konishi
  • Günter Klöppel
  • Daniel S. Longnecker

Abstract

Morphological studies of pancreatic cancers do not provide sufficient information to predict their biological behavior. The study of genetic abnormalities in pancreatic cancers may open new paths for understanding the etiology and pathogenesis of the disease, and may help in establishing markers for diagnosis and prognosis. There is increasing evidence that it is the accumulation of different genetic abnormalities, rather than a single gene defect, that underlies the multistage processes of tumorigenesis and progression of malignancy [1]. Growth factors and their receptors, tumor suppressor genes, and oncogenes have received considerable attention and seem to be promising in assessing of malignant potential [2].

Keywords

Pancreatic Cancer Chronic Pancreatitis Human Pancreatic Cancer Biliary Tract Cancer Transform Growth Factor Alpha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marx J (1989) Research news: Many gene changes found in cancer. Science 246: 1386–1388PubMedCrossRefGoogle Scholar
  2. 2.
    Lemoine NR, Hall PA (1990) Oncogenes and growth factors in pancreatic cancer. Bailliere’s Clin Gastroenterol 4: 815–832PubMedCrossRefGoogle Scholar
  3. 3.
    Lemoine NR, Hughes CM, Barton CM (1992) The epidermal growth factor receptor in human pancreatic cancer. J Pathol 166: 7–12PubMedCrossRefGoogle Scholar
  4. 4.
    Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR (1991) Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol 163: 111–116PubMedCrossRefGoogle Scholar
  5. 5.
    Glinsmann-Gibson BJ, Korc M (1991) Regulation of transforming growth factor alpha mRNA expression in T3M4 human pancreatic carcinoma cells. Pancreas 6: 142–149PubMedCrossRefGoogle Scholar
  6. 6.
    Henry JA, Bennett MK, Piggott NH, Levett DL, May FEB, Westley BR (1991) Expression of the pNR2/pS2 protein in diverse human epithelial tumors. Br J Cancer 64: 677–682 21.Google Scholar
  7. 7.
    Welter C, Theisinger B, Seitz G (1992) Association of the human spasmolytic polypeptide and an estrogen-induced breast cancer protein (pS2) with human pancreatic carcinoma. Lab Invest 66:187–192PubMedGoogle Scholar
  8. 8.
    Williams TM, Weiner DB, Greene MI, Maguire HC (1991) Expression of c-erbB-2 in human pancreatic adenocarcinomas. Pathobiol 59: 46–52CrossRefGoogle Scholar
  9. 9.
    Lemoine NR, Lobresco M, Leung HY, Barton CM, Prigent SA, Gullick WJ, Klöppel G (1992) The ERBB3 proto-oncogene in human pancreatic cancer. J Pathol 168: 269–273PubMedCrossRefGoogle Scholar
  10. 10.
    Ding SF, Habib NA, Delhanty JDA (1992) Loss of heterozygosity on chromosomes 1 and 11 in carcinoma of the pancreas. Br J Cancer 65: 809–812PubMedCrossRefGoogle Scholar
  11. 11.
    Neuman WL, Wasylyshyn ML, Jacoby R (1991) Evidence for a common molecular pathogenesis in colorectal, gastric, and pancreatic cancer. Genes, Chromosomes Cancer 3: 468–473PubMedCrossRefGoogle Scholar
  12. 12.
    Barton CM, Staddon SL, Hughes CM (1991) Abnormalities of the p53 tumor suppressor gene in human pancreatic cancer. Br J Cancer 64: 1076–1082PubMedCrossRefGoogle Scholar
  13. 13.
    Hall PA, Ray A, Lemoine NR, Midgley CM, Krausz T, Lane DP (1991) Diagnostic utility of p53 immunostaining in cytopathology. Lancet 338: 513PubMedCrossRefGoogle Scholar
  14. 14.
    Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Klöppel G (1992) Ki-ras oncogene activation in pre-invasive pancreatic cancer. Gastroenterology 101: 230–236Google Scholar
  15. 15.
    Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H (1991) Distinguishing pancreatic carcinoma from other periampullary carcinomas by analysis of mutations in the Kirsten-ras oncogene. Ann Surg 214: 657–662PubMedCrossRefGoogle Scholar
  16. 16.
    Motojima K, Urano T, Nagata Y, Shiku H, Tsunoda T, Kanematsu T (1991) Mutations in the Kirsten-ras oncogene are common but lack correlation with prognosis and tumor stage in human pancreatic carcinoma. Am J Gastroenterol 86: 1784–1788PubMedGoogle Scholar
  17. 17.
    Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Lacono C, Hirohashi S (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142: 1534–1543PubMedGoogle Scholar
  18. 18.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 Mutations in human cancers. Science 253: 49–53PubMedCrossRefGoogle Scholar
  19. 19.
    Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879PubMedCrossRefGoogle Scholar
  20. 20.
    Suzuki Y, Sekiya T, Hayashi K (1991) Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal Biochem 192: 82–84PubMedCrossRefGoogle Scholar
  21. 21.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant cK-ras genes. Cell 53: 549–554PubMedCrossRefGoogle Scholar
  22. 22.
    Nagata Y, Abe M, Motoshima K, Nakayama E, Shiku H (1990) Frequent glycine-to-aspartic acid mutations at codon 12 of c-Ki-ras gene in human pancreatic cancer (in Japanese). Jpn J Cancer Res 81: 135–140PubMedCrossRefGoogle Scholar
  23. 23.
    Mariyama M, Kishi K, Nakamura K, Obata H, Nishimura S (1989) Frequency and types of point mutation at the 12th codon of the c-Ki-ras gene found in pancreatic cancers from Japanese patients. Jpn J Cancer Res 80: 622–626PubMedCrossRefGoogle Scholar
  24. 24.
    Smit VTHBM, Boot AJM, Smits AMM, Fleuren GJ, Cornelisse CJ, Bos JL (1988) K-ras codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 16: 7773–7782PubMedCrossRefGoogle Scholar
  25. 25.
    Grünewald K, Lyons J, Frehlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartram CR (1989) High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43: 1037–1041PubMedCrossRefGoogle Scholar
  26. 26.
    Gonzales-Cadavid NF, Zhou D, Battifora H, Bar-Eli M, Cline MJ (1989) Direct sequencing analysis of exon 1 of the c-Ki-ras gene shows a low frequency of mutations in human pancreatic carcinomas. Oncogene 4: 1137–1 140Google Scholar
  27. 27.
    Banks L, Matlashewski G, Crawford L (1986) Isolation of human p53 monoclonal antibodies and their use in the studies of human p53 expression. Eur J Biochem 159: 529–534PubMedCrossRefGoogle Scholar
  28. 28.
    Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH (1990) Germ line p53 mutations in familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238PubMedCrossRefGoogle Scholar
  29. 29.
    Vogelstein B, Kinzler KW (1992) Carcinogens leave fingerprints. Nature 355: 209–210PubMedCrossRefGoogle Scholar
  30. 30.
    Shibata D, Almoguera C, Forrester K, Dunitz J, Martin SE, Cosgrove MM, Perucho M, Arnheim N (1990) Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res 50: 1279–1283PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1994

Authors and Affiliations

  • Parviz M. Pour
    • 1
  • Yoichi Konishi
    • 2
  • Günter Klöppel
    • 3
  • Daniel S. Longnecker
    • 4
  1. 1.The Eppley Institute for Research in Cancer; Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Oncological Pathology, Cancer CenterNara Medical CollegeKashihara, NaraJapan
  3. 3.Department of Pathology, Academy Hospital JetteFree University of BrusselsBrusselsBelgium
  4. 4.Department of PathologyDartmouth Medical SchoolHanoverUSA

Personalised recommendations