Skip to main content

An Overview of the Development of Specific Inhibitors of Complement: Opportunities for Therapy of Paroxysmal Nocturnal Hemoglobinuria

  • Conference paper
Paroxysmal Nocturnal Hemoglobinuria and Related Disorders

Abstract

The erythrocytes of PNH are abnormally sensitive to complementmediated lysis because they lack the two proteins (CD55 and CD59) that normally control the activity of complement on the cell surface. The hemolytic anemia of PNH is complement-mediated, but the mechanism by which complement induces spontaneous lysis of PNH RBC in vivo is speculative. Further, the basis of the greater hemolysis that occurs during sleep remains enigmatic, and it is unclear if aberrant regulation of complement underlies other symptoms of PNH. Currently available therapy for the hemolysis of PNH is suboptimal. Over the last decade, inhibitors have been developed that target the most critical functional sites of the complement cascade. These reagents have therapeutic potential in PNH. Ideally, the efficacy and safety of these inhibitors would be tested in an animal model of PNH to determine the optimal conditions and disease specific sites for complement inactivation. Due to differences in the mechanisms by which complement is regulated on murine cells, however, currently available transgenic mouse models of PNH are unlikely to be uninformative for these purposes. In the absence of an appropriate animal model, participation in phase I and phase II human trials appears to be the best available mechanism for developing a therapeutic strategy for complement inhibition in PNH. Careful analysis of the effects of these inhibitors will provide important insights into role of complement in the protean clinical manifestations of PNH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker CJ. Hemolysis in PNH. In: Young NS, Moss, J., editor. PNH and the GPI-anchored proteins. San Diego: Academic Press; 2000. p. 49–100

    Chapter  Google Scholar 

  2. Yonemura Y, Kawakita M, Koito A, Kawaguchi T, Nakakuma H, Kagimoto T, et al. Paroxysmal nocturnal haemoglobinuria with coexisting deficiency of the ninth component of complement: lack of massive haemolytic attack. Br J Haematol. 1990;74:108–113

    Article  PubMed  CAS  Google Scholar 

  3. Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A, Ono H, et al. Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1990;323:1184–1189

    Article  PubMed  CAS  Google Scholar 

  4. Motoyama N, Okada N, Yamashina M, Okada H. Paroxysmal nocturnal hemoglobinuria due to hereditary nucleotide deletion in the HRF20 (CD59) gene. Eur J Immunol. 1992;22:2669–2673

    Article  PubMed  CAS  Google Scholar 

  5. Yamaguchi M, Machii T, Azenishi Y, Nishimura J, Shibano M, Kanakura Y, et al. Detection of small populations of CD59-deficient erythrocytes in patients with aplastic anemia or myelodysplastic syndrome and normal individuals. Blood Cells Mol Dis. 2000;26:247–254

    Article  PubMed  CAS  Google Scholar 

  6. Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med. 1981;154:856–867

    Article  PubMed  CAS  Google Scholar 

  7. Holguin MH, Martin CB, Bernshaw NJ, Parker Q. Analysis of the effects of activation of the alternative pathway of complement on erythrocytes with an isolated deficiency of decay accelerating factor. J Immunol. 1992;148:498–502

    PubMed  CAS  Google Scholar 

  8. Alper CA, Balavitch D. Cobra venom factor: evidence for its being altered cobra C3 (the third component of complement). Science. 1976;191:1275–1276

    Article  PubMed  CAS  Google Scholar 

  9. Rawal N, Pangburn MK. Functional role of the noncatalytic subunit of complement C5 convertase. J Immunol. 2000;164:1379–1385

    PubMed  CAS  Google Scholar 

  10. Parker CJ, G. R. Lee. Paroxysmal nocturnal hemoglobinuria. In: Lee G. R. FJ, Greer J., Lukens L., Rodgers G., Paraskevas F., editor. Wintrobe’s Clinical Hematology. 10th edition ed. Baltimore: Williams & Wilkens; 1998. p. 1264–1288

    Google Scholar 

  11. Drouin SM, Kildsgaard J, Haviland J, Zabner J, Jia HP, McCray PB, Jr., et al. Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol. 2001;166:2025–2032

    PubMed  CAS  Google Scholar 

  12. Sloand EMY, N. S. Thrombotic Complications in PNH. San Diego: Academic Press; 2000

    Google Scholar 

  13. Wiedmer T, Hall SE, Ortel TL, Kane WH, Rosse WF, Sims PJ. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood. 1993;82:1192–1196

    PubMed  CAS  Google Scholar 

  14. Kinoshita T, Inoue N, Takeda J. Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria. Adv Immunol. 1995;60:57–103

    Article  PubMed  CAS  Google Scholar 

  15. Rosse WF. Paroxysmal nocturnal hemoglobinuria as a molecular disease. Medicine (Baltimore). 1997;76:63–93

    Article  CAS  Google Scholar 

  16. Terstappen LW, Nguyen M, Huang S, Lazarus HM, Medof ME. Defective and normal haematopoietic stem cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 1993;84:504–514

    Article  PubMed  CAS  Google Scholar 

  17. Del Rio-Tsonis K, Tsonis PA, Zarkadis IK, Tsagas AG, Lambris ID. Expression of the third component of complement, C3, in regenerating limb blastema cells of urodeles. J Immunol. 1998;161:6819–6824

    PubMed  Google Scholar 

  18. Servis C, Lambris JD. C3 synthetic peptides support growth of human CR2-positive lymphoblastoid Bcells. J Immunol. 1989;142:2207–2212

    PubMed  CAS  Google Scholar 

  19. Di Renzo L, Zicari A, Longo A, Realacci M, Naso G, Pontieri G, et al. The hemopoietic progenitor 32DC13(G) cells synthesize C3 molecules and acquire C3b acceptor sites upon differentiation or neoplastic transformation. J Immunol. 1993;151:3737–3745

    PubMed  Google Scholar 

  20. Mastellos D, Papadimitriou JC, Franchini S, Tsonis PA, Lambris JD. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol. 2001;166:2479–2486

    PubMed  CAS  Google Scholar 

  21. Halperin JA, Taratuska A, Nicholson-Weller A. Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Invest. 1993;91:1974–1978

    Article  PubMed  CAS  Google Scholar 

  22. Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56

    Article  PubMed  CAS  Google Scholar 

  23. Sahu A, Lambris JD. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology. 2000;49:133–148

    Article  PubMed  CAS  Google Scholar 

  24. Sugita Y, Ito K, Shiozuka K, Suzuki H, Gushima H, Tomita M, et al. Recombinant soluble CD59 inhibits reactive haemolysis with complement. Immunology. 1994;82:34–41

    PubMed  CAS  Google Scholar 

  25. Zhang HF, Yu J, Bajwa E, Morrison SL, Tomlinson S. Targeting of functional antibody-CD59 fusion proteins to a cell surface. J Clin Invest. 1999;103:55–61

    Article  PubMed  CAS  Google Scholar 

  26. Smith GP, Dodd, I., Davies, A., Morgan, B. P., Lachmann, P. J., Smith, R. A. G. Derivatization of soluble human CD59 with a myristoylated peptide creates a potent membrane-bound inhibitor of complement. Immunopharmacology. 2000;49:53

    Article  Google Scholar 

  27. Fitch JC, Rollins S, Matis L, Alford B, Aranki S, Collard CD, et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation. 1999;100:2499–2506

    Article  PubMed  CAS  Google Scholar 

  28. Biesecker G, Dihel L, Enney K, Bendele RA. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology. 1999;42:219–230

    Article  PubMed  CAS  Google Scholar 

  29. Weisman HF, Bartow T, Leppo MK, Marsh HQ Jr., Carson GR, Concino MF, et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 1990;249:146–151

    Article  PubMed  CAS  Google Scholar 

  30. Murohara T, Guo JP, Delyani JA, Lefer AM. Cardioprotective effects of selective inhibition of the two complement activation pathways in myocardial ischemia and reperfusion injury. Methods Find Exp Clin Pharmacol. 1995;17:499–507

    PubMed  CAS  Google Scholar 

  31. Huang J, Kim LF, Mealey R, Marsh HC, Jr., Zhang Y, Tenner AJ, et al. Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science. 1999;285:595–599

    Article  PubMed  CAS  Google Scholar 

  32. Rittershaus CW, Thomas U, Miller DP, Picard MD, Geoghegan-Barek KM, Scesney SM, et al. Recombinant glycoproteins that inhibit complement activation and also bind the selectin adhesion molecules. J Biol Chem. 1999;274:11237–11244

    Article  PubMed  CAS  Google Scholar 

  33. Moran P, Beasley H, Gorrell A, Martin E, Gribling P, Fuchs H, et al. Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo. J Immunol. 1992;149:1736–1743

    PubMed  CAS  Google Scholar 

  34. Christiansen D, Milland J, Thorley BR, McKenzie IF, Loveland BE A functional analysis of recombinant soluble CD46 in vivo and a comparison with recombinant soluble forms of CD55 and CD35 in vitro. Eur J Immunol. 1996;26:578–585

    Article  PubMed  CAS  Google Scholar 

  35. Higgins PJ, Ko JL, Lobell R, Sardonini C, Alessi MK, Yeh CG. A soluble chimeric complement inhibitory protein that possesses both decay-accelerating and factor I cofactor activities. J Immunol. 1997;158:2872–2881

    PubMed  CAS  Google Scholar 

  36. Fodor WL, Rollins SA, Guilmette ER, Setter E, Squinto SP. A novel bifunctional chimeric complement inhibitor that regulates C3 convertase and formation of the membrane attack complex. J Immunol. 1995;155:4135–4138

    PubMed  CAS  Google Scholar 

  37. Sahu A, Kay BK, Lambris JD. Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol. 1996;157:884–891

    PubMed  CAS  Google Scholar 

  38. Fiane AE, Mollnes TE, Videm V, Hovig T, Hogasen K, Mellbye OJ, et al. Compstatin, a peptide inhibitor of C3, prolongs survival of ex vivo perfused pig xenografts. Xenotransplantation. 1999;6:52–65

    Article  PubMed  CAS  Google Scholar 

  39. Nilsson B, Larsson R, Hong J, Eigne G, Ekdahl KN, Sahu A, et al. Compstatin inhibits complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood. 1998;92:1661–1667

    PubMed  CAS  Google Scholar 

  40. Kinoshita T, Bessler M., Takeda, J. Animal models of PNH. San Diego: Academic Press; 2000

    Google Scholar 

  41. Tremml G, Dominguez C, Rosti V, Zhang Z, Pandolfi PP, Keller P, et al. Increased sensitivity to complement and a decreased red blood cell life span in mice mosaic for a nonfunctional Piga gene. Blood. 1999;94:2945–2954

    PubMed  CAS  Google Scholar 

  42. Sun X, Funk CD, Deng C, Sahu A, Lambris JD, Song WC. Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc Natl Acatl Sei USA. 1999;96:628–633

    Article  CAS  Google Scholar 

  43. Holt DS, Botto M, Bygrave AE, Hanna SM, Walport MJ, Morgan BP. Targeted deletion of the CD59 gene causes spontaneous intravascular hemolysis and hemoglobinuria. Blood. 2001;98:442–449

    Article  PubMed  CAS  Google Scholar 

  44. Kim YU, Kinoshita T, Molina H, Hourcade D, Seya T, Wagner LM, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med. 1995; 181:151–159

    Article  PubMed  CAS  Google Scholar 

  45. Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000;287:498–501

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Parker, C.J. (2003). An Overview of the Development of Specific Inhibitors of Complement: Opportunities for Therapy of Paroxysmal Nocturnal Hemoglobinuria. In: Omine, M., Kinoshita, T. (eds) Paroxysmal Nocturnal Hemoglobinuria and Related Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67867-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67867-0_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68004-8

  • Online ISBN: 978-4-431-67867-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics