Skip to main content

The Role of Manganese Superoxide Dismutase in the Acquisition of Tolerance of the Heart to Ischemia: Molecular Adaptation to Ischemia

  • Chapter
Cardiac-Vascular Remodeling and Functional Interaction

Summary

The heart acquires tolerance to ischemic stress after exposure to brief, nonlethal ischemia (ischemic preconditioning). We examined the mechanism of tolerance acquisition from the aspect of oxygen radical metabolism in the heart. Manganese superoxide dismutase (Mn-SOD), which scavenges the initial reductive metabolite of molecular oxygen on ischemia-reperfusion, was induced after various external stimuli including heat shock, α1-adrenergic stimulation, and ischemia (hypoxia). The nduction was blocked by a protein kinase C (PKC) inhibitor, staurosporine, and the specific inhibition of the Mn-SOD induction by antisense oligodeoxyribonucleotides abolished acquisition of tolerance after the stimuli. Therefore, we propose that the de novo synthesis of Mn-SOD could be one of the molecular mechanisms by which the heart adapts to ischemic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136

    Article  PubMed  CAS  Google Scholar 

  2. Currie RW, Tanguay RM, Kingma JGJ (1993) Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts [see comments]. Circulation 87: 963–971

    Article  PubMed  CAS  Google Scholar 

  3. Brown JM, Grosso MA, Terada LS, Whitman GJR, Banerjee A, White CW, Harken AH, Repine JE (1989) Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci USA 86: 2516–2520

    Article  PubMed  CAS  Google Scholar 

  4. Brown JM, White CW, Terada LS, Grosso MA, Shanley PF, Mulvin DW, Banerjee A, Whitman GJ, Harken AH, Repine JE (1990) Interleukin-1 pretreatment decreases ischemia/reperfusion injury. Proc Natl Acad Sci USA 87: 5026–5030

    Article  PubMed  CAS  Google Scholar 

  5. Komamura K, Kitakaze M, Nishida K, Naka M, Tamai J, Uematsu M, Korestune Y, Nanto S, Hori M, Inoue M, Kamada T, Kodama K (1994) Progressive decreases in coronary vein flow during reperfusion in acute myocardial infarction: clinical documentation of the no-reflow phenomenon after successful thrombolysis. J Am Coll Cardiol 24: 370–377

    Article  PubMed  CAS  Google Scholar 

  6. Nakagawa Y, Ito H, Kitakaze M, Kusuoka H, Hori M, Kuzuya T, Higashino Y, Fujii K, Minamino T (1995) Effect of angina pectoris on myocardial protection in patients with reperfused anterior wall myocardial infarction: retrospective clinical evidence of “preconditioning.” J Am Coll Cardiol 25: 1076–1083

    PubMed  CAS  Google Scholar 

  7. Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F (1995) Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 91: 291–297

    Google Scholar 

  8. Benerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB, Bensard DD, Harken AH (1993) Preconditioning against myocardial dysfunction after ischemia and reperfusion by an a,-adrenergic mechanism. Circ Res 73: 656–670

    Article  Google Scholar 

  9. Downey JM, Cohen MV, Ytrehus K, Liu Y (1994) Cellular mechanisms in ischemic preconditioning: the role of adenosine and protein kinase C. Ann NY Acad Sci 723: 8298

    Article  Google Scholar 

  10. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by AI adenosine receptors in rabbit heart. Circulation 84: 350–356

    Article  PubMed  CAS  Google Scholar 

  11. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72: 1293–1299

    Article  PubMed  CAS  Google Scholar 

  12. Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88: 1264–1272

    Article  PubMed  CAS  Google Scholar 

  13. Thornton J, Stripin S, Liu GS, Swafford A, Stanley AW, Van Winkle DM, Downey JM (1990) Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol 259: H1822 - H1825

    PubMed  CAS  Google Scholar 

  14. Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R (1992) The protective role of heart stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol 24: 895–907

    Article  PubMed  CAS  Google Scholar 

  15. Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, Suzuki K, Taniguchi N, Tada M (1993) Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 264: H33 - H39

    PubMed  CAS  Google Scholar 

  16. Ambrosio G, Flaherty JT, Duilio C, Tritto I, Santoro G, Elia PP, Condorelli M, Chiariello M (1991) Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest 87: 2056–2066

    Article  PubMed  CAS  Google Scholar 

  17. Guarnieri C, Flamigni F, Caldarera CM (1980) Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol 12: 797–808

    Article  PubMed  CAS  Google Scholar 

  18. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84: 14041407

    Google Scholar 

  19. Baker JE, Felix CC, Olinger GN, Kalyanaramn B (1988) Myocardial ischemia and reperfusion: direct evidence for free radical generation by electron spin resonance spectroscopy. Proc Natl Acad Sci USA 85: 2786–2789

    Article  PubMed  CAS  Google Scholar 

  20. Garlick PB, Davies MJ, Hearse DJ, Slater TF (1987) Direct detection of free radicals in the reperfused rat heart using electron spin resonance. Circ Res 61: 757–760

    Article  PubMed  CAS  Google Scholar 

  21. Kuzuya T, Hoshida S, Kim Y, Nishida M, Fuji H, Kitabatake A, Tade M, Kamada T (1990) Detection of oxygen-derived free radical generation in the canine postischemic heart during late phase of reperfusion. Circ Res 66: 1160–1165

    Article  PubMed  CAS  Google Scholar 

  22. Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80: 1049–1062

    Article  PubMed  CAS  Google Scholar 

  23. Werns SW, Shea MJ, Driscoll EM, Cohen C, Abrams GD, Pitt B, Lucchesi BR (1985) The independent effects of oxygen radical scavengers on canine infarct size. Reduction by superoxide dismutase but not catalase. Circ Res 56: 895–898

    Google Scholar 

  24. Ambrosio G, Becker LC, Hutchins GM, Weisman HF, Weisfeldt ML (1986) Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury. Circulation 74: 1424–1433

    Article  PubMed  CAS  Google Scholar 

  25. Przyklenk K, Kloner RA (1989) “Reperfusion injury” by oxygen-derived free radicals? Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow. Circ Res 64:86–96

    Google Scholar 

  26. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR (1984) Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54: 277–285

    Google Scholar 

  27. Gallagher KP, Buda AJ, Pace D, Gerren RA, Shlafer M (1986) Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion. Circulation 73: 1065–1076

    Article  PubMed  CAS  Google Scholar 

  28. Richard VJ, Murry CE, Jennings RB, Reimer KA (1988) Therapy to reduce free radicals during early reperfusion does not limit the size of myocardial infarcts caused by 90 minutes of ischemia in dogs. Circulation 78: 473–480

    Article  PubMed  CAS  Google Scholar 

  29. Uraizee A, Reimer KA, Murry CE, Jennings RB (1987) Failure of superoxide dismutase to limit size of myocardial infarction after 40 minutes of ischemia and 4 days of reperfusion in dogs. Circulation 75: 1237–1248

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe N, Inoue M, Morino Y (1989) Inhibition of postischemic reperfusion arrhythmias by an SOD derivative that circulates bound to albumin with prolonged in vivo half-life. Biochem Pharmacol 38: 3477–3483

    Article  PubMed  CAS  Google Scholar 

  31. Inoue M, Ebashi I, Watanabe N, Morino Y (1989) Synthesis of a superoxide dismutase derivative that circulates bound to albumin and accumulates in tissues whose pH is decreased. Biochemistry 28: 6619–6624

    Article  PubMed  CAS  Google Scholar 

  32. Knowlton AA, Brecher P, Apstein CS (1991) Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 87: 139–147

    Article  PubMed  CAS  Google Scholar 

  33. Yamashita N, Nishida M, Hoshida S, Kuzuya T, Hori M, Taniguchi N, Kamada T, Tada M (1994) Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 94: 21932199

    Google Scholar 

  34. Currie RW, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63: 543–549

    Article  PubMed  CAS  Google Scholar 

  35. Waspe LE, Ordahl CP, Simpson PC (1990) The cardiac beta-myosin heavy chain isogene is induced selectively in alpha,-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J Clin Invest 85: 1206–1214

    Article  PubMed  CAS  Google Scholar 

  36. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, Shinozaki Y, Chujo M, Mori H, Inoue M, Kamada T (1994) Alpha,-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5’-nucleotidase activity. J Clin Invest 93: 2197–2205

    Article  PubMed  CAS  Google Scholar 

  37. Gross GJ (1995) ATP-sensitive potassium channels and myocardial preconditioning. Basic Res Cardiol 90: 85–88

    Article  PubMed  CAS  Google Scholar 

  38. Tsuchida A, Liu Y, Liu GS, Cohen MV, Downey JM (1994) Alpha,-adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75: 576–585

    Article  PubMed  CAS  Google Scholar 

  39. Takuwa Y, Yanagisawa M, Takuwa N, Masaki T (1989) Endothelin, its diverse biological activities and mechanisms of action. Prog Growth Factor Res 1: 195–206

    Article  PubMed  CAS  Google Scholar 

  40. Menon V, Yang J, Ku Z, Thomason DB (1995) Decrease in heart peptide initiation during head-down tilt may be modulated by HSP-70. Am J Physiol 268: C1375 - C1380

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Nishida, M., Kuzuya, T., Hoshida, S., Yamashita, N., Hori, M., Tada, M. (1997). The Role of Manganese Superoxide Dismutase in the Acquisition of Tolerance of the Heart to Ischemia: Molecular Adaptation to Ischemia. In: Maruyama, Y., Hori, M., Janicki, J.S. (eds) Cardiac-Vascular Remodeling and Functional Interaction. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67041-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67041-4_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67043-8

  • Online ISBN: 978-4-431-67041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics