Skip to main content

Cardiac Hypertrophy and the Renin-Angiotensin System

  • Chapter
Cardiac-Vascular Remodeling and Functional Interaction

Summary

In hearts with myocardial damage secondary to myocardial infarction, chronic ischemia, inflammation, or pressure or volume overload, there is a complex sequence of compensatory events that ultimately result in an adversely remodeled myocardium and a dilated, thin-walled, spherical ventricle. For a period of time, a preclinical heart failure state may exist in which there is ventricular dysfunction caused by myocardial damage but no clinical evidence of cardiac insufficiency, circulatory congestion, or edema. However, in an attempt to maintain this state, there are ongoing myocardial adaptations resulting in a continual state of remodeling with progressive ventricular dilatation mediated by changes in myocyte morphology, intracellular calcium regulation, and extracellular matrix production. Although a number of growth-promoting factors have been implicated in cardiac hypertrophy and remodeling, angiotensin II (ANG II) is assumed to play a major role in this process because it is a potent growth factor for myocytes and fibroblasts in the heart [1,2]. It has been postulated that the cardiac renin-angiotensin system (RAS) is activated during compensated heart failure and that the continued presence of ANG II could have important local pathological functions in the transition to heart failure (Fig. 1). Alternatively, the heart is a target organ for ANG II, which produces a positive inotropic and chrono tropic effect on myocytes [4–6], stimulates the release of norepinephrine from cardiac sympathetic nerves [7,8], and acts as a growth factor for myocytes [1,2]. Thus, the failing heart may be dependent on local ANG II production to provide inotropic support and to promote myocyte hypertrophy to minimize wall stress. However, the identification of alternative ANG II-forming mechanisms in the heart and the role of angiotensin-converting enzyme (ACE) on bradykinin degradation have raised questions regarding the mechanism of ANG II production in the heart and the role of ANG II per se in cardiac hypertrophy and remodeling. This chapter reviews these issues and the results of animal models investigating the cardiac renin-angiotensin system in cardiac hypertrophy caused by pressure and volume overload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73: 413–423

    Article  PubMed  CAS  Google Scholar 

  2. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259: H610 - H618

    PubMed  CAS  Google Scholar 

  3. Oparil S, Meng QC, Sun S, Chen YF, Dell’Italia LC (1996) Tissue angiotensin converting enzyme. In: Catravas J, Callow A, Ryan U (eds) Vascular endothelium: responses to injury. Plenum, New York

    Google Scholar 

  4. Freer RJ, Pappano AJ, Peach MJ, Bing KT, McLean MJ, Vogel S, Spereleakis N (1976) Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res 39: 178–183

    Article  PubMed  CAS  Google Scholar 

  5. Meulemans AL, Andries LJ, Brutsaert DL (1990) Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II? Circ Res 66: 15911601

    Google Scholar 

  6. Moravec CS, Schluchter MD, Parnandi L, Czerska B, Stewart RW, Rosenkranz E, Bond M (1990) Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation 82: 1973–1984

    Article  PubMed  CAS  Google Scholar 

  7. Blumberg AL, Ackerly JA, Peach MJ (1975) Differentiation of neurogenic and myocardial angiotensin II receptors in isolated rabbit atria. Circ Res 36: 719–726

    Article  PubMed  CAS  Google Scholar 

  8. Brasch, Sieroslawski HL, Dominiak P (1993) Angiotensin II increases norepinephrine release from atria by acting on angiotensin subtype 1 receptors. Hypertension (Dallas) 22 (5): 699–704

    Article  CAS  Google Scholar 

  9. Grossman W (1980) Cardiac hypertrophy: useful adaptation or pathological process? Am J Med 69: 576–590

    Article  PubMed  CAS  Google Scholar 

  10. Grossman W, Jones D, McLaurin LP (1974) Wall stress and patterns of hypertrophy in the human ventricle. J Clin Invest 56: 56–64

    Article  Google Scholar 

  11. Carabello BA, Zile MR, Tanaka R, Cooper IV G (1992) Left ventricular hypertrophy due to volume overload versus pressure overload. Am J Physiol (Heart Circ Physiol 32 ) 263: H1137 - H1144

    Google Scholar 

  12. Carabello BA, Nakano B, Corin W, Biederman R, Spann JF Jr (1989) Left ventricular function in experimental volume overload hypertrophy. Am J Physiol (Heart Circ Physiol 25 ) 256: H974 - H981

    Google Scholar 

  13. Anversa P, Ricci R, Olivetti G (1986) Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol 7: 1140–1149

    Article  PubMed  CAS  Google Scholar 

  14. Weber KT, Sun Y, Guarda E (1994) Structural remodeling of the hypertensive heart and the role of hormones. Hypertension (Dallas) 23 (2): 869–877

    Article  CAS  Google Scholar 

  15. Boluyt MO, O’Neill L, Meredith AL, Bing OHL, Brooks WW, Conrad CH, Crow MT, Lakatta EG (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix proteins. Circ Res 75: 23–32

    Google Scholar 

  16. Liu Z, Hilbelink DR, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myoyte size in rats with aortocaval fistulas 2. Long-term effects. Circ Res 69: 59–65

    Google Scholar 

  17. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas: 1. Developing and established hypertrophy. Circ Res 69: 52–58

    Google Scholar 

  18. Lerault F, Rouleau JL, Juneau C, Rose C, Rakusan K (1990) Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas. Circ Res 66: 846–849

    Article  Google Scholar 

  19. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker JH, Armstrong PW (1990) Fibrillar collagen and remodeling of the canine left ventricle. Circulation 82: 1387–1401

    Article  PubMed  CAS  Google Scholar 

  20. Imoto DS, Covell JW, Harper E (1988) Increase in cross-linking of type I and type III collagens associated with volume-overload hypertrophy. Circ Res 63: 399–408

    Article  Google Scholar 

  21. Ruzicka M, Keeley FW, Leenen FHH (1994) The renin-angiotensin system and volume overload-induced changes in cardiac collagen and elastin. Circulation 90: 198–196

    Google Scholar 

  22. Dell’Italia LJ, Balcells E, Meng QC, Bishop SP, Straeter-Knowlen IM, Hankes GH, Dillon R, Elton T, Oparil S (1995) Effect of ramipsil on cardiac ultrastructure and intracardiac ACE activity and angiotensin II levels in chronic mitral regurgitation in the dog. Circulation 92 (8): I - 669

    Google Scholar 

  23. Urabe Y, Mann DL, Kent RL, Nakano K, Tomanek RJ, Carabello BA, Cooper G III (1992) Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res 70: 131–147

    Article  PubMed  CAS  Google Scholar 

  24. Dell’Italia L (1995) The canine model of mitral regurgitation. Heart Failure 11(5): 208218

    Google Scholar 

  25. Dell’Italia Li, Meng QC, Balcells E, Straeter-Knowlen IM, Hankes GH, Dillon R, Cartee RE, Orr R, Bishop SP, Oparil S, Elton T (1995) Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol (Heart Circ Physiol 38 ) 269: H2065 - H2073

    Google Scholar 

  26. Caulfield JB, Borg TK (1979) The collagen network of the heart. Lab Invest 40:364–372

    Google Scholar 

  27. Komamura K, Shannon RP, Ihara T, Shen Y, Mirsky I, Bishop SF, Vatner SF (1994) Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am J.Physiol (Heart Circ Physiol) 265:H1119–H1131

    Google Scholar 

  28. Zellner JI, Spinale FG, Eble DM, Hewett KW, Crawford FA (1991) Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 69: 590–600

    Article  PubMed  CAS  Google Scholar 

  29. Villari B, Vassalli G, Campbell SE, Hess OM (1995) Differences in left ventricular adaptation to chronic volume overload. Circulation 92 (8): I - 791

    Google Scholar 

  30. Young A, Orr R, Smaill B, Dell’Italia LJ (1996) Three-dimensional changes in left and right ventricular geometry in chronic mitral regurgitation. Am J Physiol (Heart Circ Physiol) (in press)

    Google Scholar 

  31. Sadoshima J, Izumo S (1993) Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro: roles of phospholipid-derived second messengers. Circ Res 73: 424–438

    Article  PubMed  CAS  Google Scholar 

  32. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–984

    Article  PubMed  CAS  Google Scholar 

  33. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y (1995) Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 77: 258–265

    Article  PubMed  CAS  Google Scholar 

  34. Schunkert H, Sadoshima J, Cornelius T, Kagaya Y, Weinberg EU, Izumo S, Riegger G, Lorell BH (1995) Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ Res 76: 489–497

    Google Scholar 

  35. Knowlton KU, Rockman HA, Itani M, Vovan A, Seidman CE, Chien KR (1995) Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophic ventricular myocardium. J Clin Invest 96: 1311–1318

    Article  PubMed  CAS  Google Scholar 

  36. Lambert C, Massillon Y, Meloche S (1995) Upregulation of cardiac angiotensin II AT, receptors in congenital cardiomyopathic hamsters. Circ Res 77: 1001–1007

    Article  PubMed  CAS  Google Scholar 

  37. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA (1994) Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-131 expression. Hypertension (Dallas) 23: 587–592

    Article  CAS  Google Scholar 

  38. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature 377: 744–747

    Article  PubMed  CAS  Google Scholar 

  39. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BLM, Inagami T (1995) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377: 748–750

    Article  PubMed  CAS  Google Scholar 

  40. Lindpaintner K, Ganten D (1991) The cardiac renin-angiotensin system: an appraisal of present experimental and clinical evidence. Circ Res 68: 905–921

    Article  PubMed  CAS  Google Scholar 

  41. Baker KM, Chemin M, Wixon SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol (Heart Circ Physiol) 259: H324 - H332

    CAS  Google Scholar 

  42. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin-converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: effects on coronary resistance, contractility and relaxation. J Clin Invest 86: 1913–1920

    Article  PubMed  CAS  Google Scholar 

  43. Schunkert H, Jackson B, Tang SS, Schoen FJ, Smits JFM, Apstein CS, Lorell BH (1993) Distribution and functional significance of cardiac ACE in hypertrophied rat hearts. Circulation 87: 1328–1339

    Article  PubMed  CAS  Google Scholar 

  44. Iwai N, Shimoike H, Kinoshita M (1995) Cardiac renin-angiotensin system in the hypertrophied heart. Circulation 92: 2690–2696

    Article  PubMed  CAS  Google Scholar 

  45. Pieruzzi F, Abassi ZA, Keiser HR (1995) Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation 92: 3105–3112

    Article  PubMed  CAS  Google Scholar 

  46. Boer PH, Ruzicka M, Lear W, Harmsen E, Rosenthal J, Leenen FHH (1994) Stretch-mediated activation of the cardiac renin gene. Am J Physiol (Heart Circ Physiol 36 ) 267: H1630 - H1636

    Google Scholar 

  47. Ruzicka M, Skarda V, Leenen FHH (1995) Effects of ACE inhibitors on circulating versus cardiac angiotensin II in volume overload-induced cardiac hypertrophy in rats. Circulation 92: 3568–3573

    Article  PubMed  CAS  Google Scholar 

  48. Ruzicka M, Leenen FHH (1995) Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 91: 16–19

    Article  PubMed  CAS  Google Scholar 

  49. Calderone A, Takahashi N, Izzo NJ, Thaik CM, Colucci WS (1995) Pressure-and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and different induction of peptide growth factor mRNAs. Circulation 92: 2385–2390

    Article  PubMed  CAS  Google Scholar 

  50. Pahor M, Bernabei R, Sgadari AN, Gambassi G, Giudice PL, Pacifici L, Ramacci MT, Lagrasta C, Olivette G, Carbonin P (1991) Enalapril prevents cardiac fibrosis and arrhythmias in hypertensive rats. Hypertension (Dallas) 18: 148–157

    Article  CAS  Google Scholar 

  51. Weinberg EO, Schoen FJ, Gearge D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90: 1410–1422

    Article  PubMed  CAS  Google Scholar 

  52. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS (1995) Serial echocardiographic-doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 91: 2642–2654

    Google Scholar 

  53. Qing G, Garcia R (1992) Chronic captopril and losartan (Dup 753) administration in rats with high output heart failure. Am J Physiol (Heart Circ Physiol 32 ) 263: H833 - H840

    Google Scholar 

  54. Gay RG (1990) Captopril reduces left ventricular enlargement induced by chronic volume overload. Am J Physiol (Heart Circ Physiol 28 ) 259: H796 - H803

    Google Scholar 

  55. Linz W, Scholkens BA, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens Part A Theory Pract 11 (7): 1325–1350

    Article  CAS  Google Scholar 

  56. Garg VC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Article  PubMed  CAS  Google Scholar 

  57. Linz W, Scholkens BA (1992) A specific 132-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105: 771–772

    Article  PubMed  CAS  Google Scholar 

  58. McDonald KM, Garr MD, Carlyle PF, Francis GS, Hauer K, Hunter DW, Parrish T, Stillman A, Cohn JN (1994) The relative effects of alpha, adrenoreceptor blockade, converting enzyme inhibitor therapy and angiotensin II subtype I receptor blockade on ventricular remodeling in the dog. Circulation 90: 3034–3036

    Article  PubMed  CAS  Google Scholar 

  59. McDonald KM, Mock J, D’Aloia A, Parrish T, Hauer K, Francis G, Stillman A, Cohn JN (1995) Bradykinin antagonism inhibits the antigrowth effect of converting enzyme inhibition in the dog myocardium after discrete transmural myocardial necrosis. Circulation 91: 2043–2048

    Article  PubMed  CAS  Google Scholar 

  60. Janicki JS, Matsubara BB (1994) Myocardial collagen and left ventricular diastolic function. In: Gaasch WH, LeWinter MM (eds) Left ventricular diastolic function and heart failure. Lea and Febiger, Philadelphia, p 125–140

    Google Scholar 

  61. Masashi A, Matsui H, Periasamy M (1994) Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74: 555–564

    Article  Google Scholar 

  62. Neyses L, Vetter H (1990) Impaired relaxation of hypertrophied myocardium is potentiated by angiotensin II. J Hypertens 81(suppl III):III-123-III-129

    Google Scholar 

  63. Grocott-Mason R, Anning P, Evans H, Lewis MJ, Shah AM (1994) Modulation of left ventricular relaxation in the isolated ejecting heart by endogenous nitric oxide. Am J Physiol 267: H1804 - H1813

    PubMed  CAS  Google Scholar 

  64. Anning PB, Grocott-Mason RM, Lewis MJ, Shah AM (1995) Enhancement of left ventricular relaxation in the isolated heart by an angiotensin-converting enzyme inhibitor. Circulation 92: 2660–2665

    Article  PubMed  CAS  Google Scholar 

  65. Friedrich SP, Lorell BH, Rousseau MF, Hyashida W, Hess OM, Douglas PS, Gordon S, Keighley CS, Benedict C, Krayenbuehl HP, Grossman W, Pouleur H (1994) Increased angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. Circulation 90: 2761–2771

    Article  PubMed  CAS  Google Scholar 

  66. Dzau VJ (1989) Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens 7: 933–936

    Article  PubMed  CAS  Google Scholar 

  67. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66: 883–890

    Article  PubMed  CAS  Google Scholar 

  68. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265 (36): 22348–22357

    PubMed  CAS  Google Scholar 

  69. Husain A, Kinoshita A, Sung SS, Urata H, Bumpus FM (1994) The cardiac reninangiotensin system. Futura, Armonk, NY, pp 309–332

    Google Scholar 

  70. Zisman LS, Abraham WT, Meizell GE, Vamvakias BN, Quaife RA, Lowes BD, Roden RL, Peacock SJ, Groves BM, Bristow MR, Perryman MB (1995) Angiotensin II formation in the intact human heart: predominance of the angiotensin converting enzyme pathway. J Clin Invest 95: 1490–1498

    Article  Google Scholar 

  71. Okunishi H, Oka Y, Shiota N, Kawamoto T, Song K, Miyazaki M (1993) Marked species-differences in the vascular angiotensin II-forming pathways: humans vs. rodents. Jpn J Pharmacol 62: 207–210

    Article  PubMed  CAS  Google Scholar 

  72. Chandrasekharan UM, Sanker S, Glynias MJ, Karnik SS, Husain A (1996) Angiotensin II-forming activity in a reconstructed ancestral chymase. Science 271: 502–505

    Article  PubMed  CAS  Google Scholar 

  73. Balcells E, Meng QC, Hageman G, Palmer RW, Durand J, Dell’Italia LJ (1996) Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol (in press)

    Google Scholar 

  74. Urata H, Boehm KD, Philip A, Kinoshita A, Gabrovsek J, Bumpus FM, Husain A (1993) Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest 91: 1269–1281

    Article  PubMed  CAS  Google Scholar 

  75. Johnston CI (1994) Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension (Dallas) 23: 258–268

    Article  CAS  Google Scholar 

  76. Hoit B, Shao Y, Kinoshita A, Gabel M, Hussain A, Walsh RA (1995) Effects of angiotensin II generated by an angiotensin converting enzyme—independent pathway on left ventricular performance in the conscious baboon. J Clin Invest 95: 1519–1527

    Article  PubMed  CAS  Google Scholar 

  77. Kramer BK, Nishida M, Kelly RA, Smith TV (1992) Endothelins. Myocardial actions of a new class of cytokines. Circulation 85: 350–356

    Google Scholar 

  78. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Marumo F, Hiroe M (1993) Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92: 398403

    Google Scholar 

  79. Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H, Marumo F, Hiroe M (1995) Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest 96: 10591065

    Google Scholar 

  80. Arai M, Yoguchi A, Iso T, Takahashi T, Imai S, Murata K, Suzuki T (1995) Endothelin1 and its binding sites are upregulated in pressure overload cardiac hypertrophy. Am J Physiol 268: H2084–2091

    PubMed  CAS  Google Scholar 

  81. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT (1991) Cardiac myocyte necrosis induced by angiotensin H. Circ Res 69: 1185–1195

    Article  PubMed  CAS  Google Scholar 

  82. Henegar JR, Brower GL, Kabour A, Janicki JS (1995) Catecholamine response to chronic ANG II infusion and its role in myocyte and coronary vascular damage. Am J Physiol (Heart Circ Physiol 38 ) 269: H1564 - H1569

    Google Scholar 

  83. Mann DL, Kent RL, Parsons B, Cooper G IV (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85: 790–804

    Article  PubMed  CAS  Google Scholar 

  84. Tsutsui H, Spinale FG, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, Cooper G IV, Carabello BA (1994) Effects of chronic beta-adrenergic blockade on the left ventricular and cardiac myocyte abnormalities of chronic mitral regurgitation. J Clin Invest 93: 2639–2648

    Article  PubMed  CAS  Google Scholar 

  85. Young M, Fullerton M, Dilley R, Funder J (1994) Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 93: 2578–2583

    Article  PubMed  CAS  Google Scholar 

  86. Nicoletti A, Heudes D, Hinglais N, Appay M, Philippe M, Sassy-Prigent C, Bariety J, Michel J (1995) Left ventricular fibrosis in renovascular hypertensive rats. Hypertension (Dallas) 26: 101–111

    Article  CAS  Google Scholar 

  87. Hou J, Kato H, Cohen RA, Chobanian AV, Breche P (1995) Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest 96: 2469–2477

    Article  PubMed  CAS  Google Scholar 

  88. Studer R, Reinecke H, Muller 13, Holtz J, Hanjorg J, Drexler H (1994) Increased angiotensin-I converting enzyme gene expression in the failing human heart. J Clin Invest 94: 301–310

    Article  PubMed  CAS  Google Scholar 

  89. Zisman L, Bush EW, Taft CS, Bristow MR, Perryman MB, Raynolds MV (1994) Increase in angiotensin-converting gene expression and activity in the failing human ventricle. Circulation 90 (4): 1–578

    Google Scholar 

  90. Sawa S, Kawaguchi H, Mochizuki N, Endo Y, Kudo T, Tokuchi F, Fijioka Y, Nagashima K, Kitabatake A (1994) Distribution of angiotensinogen in diseased human hearts. Mol Cell Biochem 132: 15–23

    Article  PubMed  CAS  Google Scholar 

  91. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet JP (1995) Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11-betahydroxysteroid dehydrogenase in the human heart. Circulation 92: 175–182

    Article  PubMed  CAS  Google Scholar 

  92. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1989) Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 69: 54–66

    Article  PubMed  CAS  Google Scholar 

  93. Studer R, Susch G, Muller B, Oechslin E, Hess OM, Drexler H (1994) Role of pressure overload and wall stress for cardiac gene expression of angiotensin-converting enzyme in humans. Circulation 90 (4): I - 451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Dell’Italia, L.J. (1997). Cardiac Hypertrophy and the Renin-Angiotensin System. In: Maruyama, Y., Hori, M., Janicki, J.S. (eds) Cardiac-Vascular Remodeling and Functional Interaction. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67041-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67041-4_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67043-8

  • Online ISBN: 978-4-431-67041-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics