Skip to main content

Oxygenation of Nonnative Substrates Using a Malfunction State of Cytochrome P450s

  • Chapter
  • First Online:
Fifty Years of Cytochrome P450 Research

Abstract

The substrate specificity of bacterial cytochrome P450s is very high. Therefore, their catalytic activities toward nonnative substrates are low, whereas their inherent catalytic activities are very high compared with P450s isolated from animals and plants. Using “decoy” molecules, whose structures are very similar to natural substrates, to trick their substrate recognition with decoy molecules, we can induce a malfunction state of cytochrome P450s. Decoy molecule binding under this malfunction state allows bacterial cytochrome P450s to catalyze the oxidation reaction of nonnative substrates. This system using decoy molecules does not require any substitution of amino acids to alter substrate specificity or any changes in the enantioselectivity of nonnative substrate oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks RE, Tatlow JC (1986) A guide to modern organofluorine chemistry. J Fluor Chem 33:227–346

    Article  Google Scholar 

  • Bell SG, Stevenson JA, Boyd HD, Campbell S, Riddle AD, Orton EL, Wong LL (2002) Butane and propane oxidation by engineered cytochrome P450(cam). Chem Commun (5):490–491

    Google Scholar 

  • Bell SG, Orton E, Boyd H, Stevenson JA, Riddle A, Campbell S, Wong LL (2003) Engineering cytochrome P450cam into an alkane hydroxylase. Dalton Trans 11:2133–2140

    Article  Google Scholar 

  • Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA (1992) Fatty-acid monooxygenation by P450bm-3: product identification and proposed mechanisms for the sequential hydroxylation reactions. Arch Biochem Biophys 292:20–28

    Article  CAS  PubMed  Google Scholar 

  • Chen MMY, Snow CD, Vizcarra CL, Mayo SL, Arnold FH (2012) Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 25:171–178

    Article  CAS  PubMed  Google Scholar 

  • Daff SN, Chapman SK, Turner KL, Holt RA, Govindaraj S, Poulos TL, Munro AW (1997) Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry 36:13816–13823

    Article  CAS  PubMed  Google Scholar 

  • Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277

    Article  CAS  PubMed  Google Scholar 

  • Dunford HB, Stillman JS (1976) Function and mechanism of action of peroxidases. Coord Chem Rev 19:187–251

    Article  CAS  Google Scholar 

  • Farinas ET, Alcalde M, Arnold F (2004) Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron 60:525–528

    Article  CAS  Google Scholar 

  • Fasan R (2012) Tuning P450 enzymes as oxidation catalysts. ACS Catal 2:647–666

    Article  CAS  Google Scholar 

  • Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting native-like catalytic properties. Angew Chem Int Ed 46:8414–8418

    Article  CAS  Google Scholar 

  • Fasan R, Meharenna YT, Snow CD, Poulos TL, Arnold FH (2008) Evolutionary history of a specialized P450 propane monooxygenase. J Mol Biol 383:1069–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujishiro T, Shoji O, Watanabe Y (2010) Non-covalent modification of the active site of cytochrome P450 for inverting the stereoselectivity of monooxygenation. Tetrahedron Lett 52:395–397

    Article  Google Scholar 

  • Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y (2011) Crystal structure of H2O2-dependent cytochrome P450SPα with its bound fatty acid substrate. J Biol Chem 286:29941–29950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujishiro T, Shoji O, Kawakami N, Watanabe T, Sugimoto H, Shiro Y, Watanabe Y (2012) Chiral-substrate-assisted stereoselective epoxidation catalyzed by H2O2-dependent cytochrome P450SPα. Chem Asian J 7:2286–2293

    Article  CAS  PubMed  Google Scholar 

  • Girhard M, Schuster S, Dietrich M, Durre P, Urlacher VB (2007) Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new [alpha]-fatty acid hydroxylase. Biochem Biophys Res Commun 362:114–119

    Article  CAS  PubMed  Google Scholar 

  • Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, Smith WE, Cheesman MR, Munro AW (2004) Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J Biol Chem 279:23274–23286

    Article  CAS  PubMed  Google Scholar 

  • Girvan HM, Toogood HS, Littleford RE, Seward HE, Smith WE, Ekanem IS, Leys D, Cheesman MR, Munro AW (2009) Novel haem co-ordination variants of flavocytochrome P450 BM3. Biochem J 417:65–76

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Matsunaga I, Kusunose E, Ichihara K (2000) Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid [alpha]-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450(SP[alpha])). J Biochem (Tokyo) 128:189–194

    Article  CAS  Google Scholar 

  • Kawakami N, Shoji O, Watanabe Y (2011) Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes. Angew Chem Int Ed 50:5315–5318

    Article  CAS  Google Scholar 

  • Kawakami N, Shoji O, Watanabe Y (2013) Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450BM3 containing perfluorocarboxylic acids as decoy molecules. Chem Sci 4:2344–2348

    Article  CAS  Google Scholar 

  • Lee D-S, Yamada A, Matsunaga I, Ichihara K, S-i A, Park S-Y, Shiro Y (2002) Crystallization and preliminary X-ray diffraction analysis of fatty-acid hydroxylase cytochrome P450BS[beta] from Bacillus subtilis. Acta Crystallogr D 58:687–689

    Article  PubMed  Google Scholar 

  • Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Poulos TL (1997) The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Shiro Y (2004) Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Curr Opin Chem Biol 8:127–132

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Yamada M, Kusunose E, Nishiuchi Y, Yano I, Ichihara K (1996) Direct involvement of hydrogen peroxide in bacterial [alpha]-hydroxylation of fatty acid. FEBS Lett 386:252–254

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) Molecular cloning and expression of fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. J Biol Chem 272:23592–23596

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Sumimoto T, Kusunose E, Ichihara K (1998a) Phytanic acid alpha-hydroxylation by bacterial cytochrome P450. Lipids 33:1213–1216

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Yamada M, Kusunose E, Miki T, Ichihara K (1998b) Further characterization of hydrogen peroxide-dependent fatty acid {alpha}-hydroxylase from Sphingomonas paucimobilis. J Biochem (Tokyo) 124:105–110

    Article  CAS  Google Scholar 

  • Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid [beta]-hydroxylating cytochrome P450. Lipids 34:841–846

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for [alpha]-hydroxylation. Lipids 35:365–371

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H (2001) Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Arch Biochem Biophys 394:45–53

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002a) Functional modulation of a peroxygenase cytochrome P450: novel insight into the mechanisms of peroxygenase and peroxidase enzymes. FEBS Lett 528:90–94

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Yamada A, Lee DS, Obayashi E, Fujiwara N, Kobayashi K, Ogura H, Shiro Y (2002b) Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy. Biochemistry 41:1886–1892

    Article  CAS  PubMed  Google Scholar 

  • Meinhold P, Peters MW, Chen MMY, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450BM3. ChemBioChem 6:1765–1768

    Article  CAS  PubMed  Google Scholar 

  • Murataliev MB, Feyereisen R (1996) Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Biochemistry 35:15029–15037

    Article  CAS  PubMed  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-Dalton cytochrome-P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  • Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry. Plenum, New York

    Book  Google Scholar 

  • Ost TWB, Clark J, Mowat CG, Miles CS, Walkinshaw MD, Reid GA, Chapman SK, Daff S (2003) Oxygen activation and electron transfer in flavocytochrome P450BM3. J Am Chem Soc 125:15010–15020

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450bm-3, a prototype for microsomal P450s. Science 261:731–736

    Article  CAS  PubMed  Google Scholar 

  • Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science 330:933–937

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RJ (2005) Industrial catalytic processes—phenol production. Appl Catal A 280:89–103

    Article  CAS  Google Scholar 

  • Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew Chem Int Ed 46:3656–3659

    Article  CAS  Google Scholar 

  • Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y (2010a) Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. J Biol Inorg Chem 15:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Shoji O, Wiese C, Fujishiro T, Shirataki C, Wünsch B, Watanabe Y (2010b) Aromatic C–H bond hydroxylation by P450 peroxygenases: a facile colorimetric assay for monooxygenation activities of enzymes based on Russig’s blue formation. J Biol Inorg Chem 15:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew Chem Int Ed 52:6606–6610

    Article  CAS  Google Scholar 

  • Sligar SG (1976) Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 15:5399–5406

    Article  CAS  PubMed  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse CJC, Bell SG, Wong LL (2012) P450(Bm3) (Cyp102a1): connecting the dots. Chem Soc Rev 41:1218–1260

    Article  CAS  PubMed  Google Scholar 

  • Zhai PM, Wang LQ, Liu CH, Zhang SC (2005) Deactivation of zeolite catalysts for benzene oxidation to phenol. Chem Eng J 111:1–4

    Article  CAS  Google Scholar 

  • Zilly FE, Acevedo JP, Augustyniak W, Deege A, Hausig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem Int Ed 50:2720–2724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (S) to Y.W. (24225004) and a Grant-in-Aid for Young Scientists (A) to O.S. (21685018) from the Ministry of Education, Culture, Sports, Science, and Technology (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osami Shoji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Shoji, O., Watanabe, Y. (2014). Oxygenation of Nonnative Substrates Using a Malfunction State of Cytochrome P450s. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_6

Download citation

Publish with us

Policies and ethics