Skip to main content

Cytochrome P450-Dependent Change in UDP-Glucuronosyltransferase Function and Its Reverse Regulation

  • Chapter
  • First Online:
Fifty Years of Cytochrome P450 Research

Abstract

Cytochrome P450 (P450, CYP) and UDP-glucuronosyltransferase (UGT) are important enzymes involved in phase I and II drug metabolism, respectively. It has long been believed that these enzymes work separately, because their topology with regard to the endoplasmic reticulum membrane is very different and the location of the two enzymes is separated by the membrane. However, cumulative evidence suggests that these enzymes interact with each other to modify their respective functions. This review mainly focuses on a P450-dependent alteration in UGT function and discusses the relevance of this modification to the polymorphic nature of drug metabolism mediated by UGTs. Also, we describe the selectivity of P450/UGT isoforms in terms of their pairing and possible P450/UGT domains serving the interactions. The reverse modulation, that is, the alteration of P450 function by UGT, is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alston K, Robinson RC, Park SS, Gelboin HV, Friedman FK (1991) Interactions among cytochromes P-450 in the endoplasmic reticulum. Detection of chemically cross-linked complexes with monoclonal antibodies. J Biol Chem 266:735–739

    CAS  PubMed  Google Scholar 

  • Aono S, Yamada Y, Keino H, Hanada N, Nakagawa T, Sasaoka Y, Yazawa T, Sato H, Koiwai O (1993) Identification of defect in the genes for bilirubin UDP-glucuronosyl-transferase in a patient with Crigler-Najjar syndrome type II. Biochem Biophys Res Commun 197:1239–1244

    CAS  PubMed  Google Scholar 

  • Basu NK, Ciotti M, Hwang MS, Kole L, Mitra PS, Cho JW, Owens IS (2004a) Differential and special properties of the major human UGT1-encoded gastrointestinal UDP-glucuronosyltransferases enhance potential to control chemical uptake. J Biol Chem 279:1429–1441

    CAS  PubMed  Google Scholar 

  • Basu NK, Kubota S, Meselhy MR, Ciotti M, Chowdhury B, Hartori M, Owens IS (2004b) Gastrointestinally distributed UDP-glucuronosyltransferase 1A10, which metabolizes estrogens and nonsteroidal anti-inflammatory drugs, depends upon phosphorylation. J Biol Chem 279:28320–28329

    CAS  PubMed  Google Scholar 

  • Bosma PJ, Roy Chowdhury J, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP, Roy Chowdhury N (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333:1171–1175

    CAS  PubMed  Google Scholar 

  • Bossuyt X, Blanckaert N (1996) Uridine diphosphoxylose enhances hepatic microsomal UDP-glucuronosyltransferase activity by stimulating transport of UDP-glucuronic acid across the endoplasmic reticulum membrane. Biochem J 315:189–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cosme J, Johnson EF (2000) Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J Biol Chem 275:2545–2553

    CAS  PubMed  Google Scholar 

  • Crigler JF, Najjar VA (1952) Congenital familial non-haemolytic jaundice with kernicterus. Paediatrics 10:169–180

    Google Scholar 

  • Dutton GJ (1980) Glucuronidation of drugs and other compounds. CRC, Boca Raton

    Google Scholar 

  • Edwards RJ, Murray BP, Singleton AM, Boobis AR (1991) Orientation of cytochrome P450 in the endoplasmic reticulum. Biochemistry 30:71–76

    CAS  PubMed  Google Scholar 

  • Emi Y, Ikushiro S, Kato Y (2007) Thyroxine-metabolizing rat uridine diphosphate-glucuronosyltransferase 1A7 is regulated by thyroid hormone receptor. Endocrinology 148:6124–6133

    CAS  PubMed  Google Scholar 

  • Erps LT, Ritter JK, Hersh JH, Blossom D, Martin NC, Owens IS (1994) Identification of two single base substitutions in the UGT1 gene locus which abolish bilirubin uridine diphosphate glucuronosyltransferase activity in vitro. J Clin Invest 93:564–570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    CAS  PubMed  Google Scholar 

  • Finel M, Kurkela M (2008) The UDP-glucuronosyltransferases as oligomeric enzymes. Curr Drug Metab 9:70–76

    CAS  PubMed  Google Scholar 

  • Fremont JJ, Wang RW, King CD (2005) Co-immunoprecipitation of UDP-glucuronosyltransferase (UGT) isoforms and cytochrome P450 3A4. Mol Pharmacol 67:260–262

    CAS  PubMed  Google Scholar 

  • Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59

    CAS  PubMed  Google Scholar 

  • Fujiwara R, Nakajima M, Oda S, Yamanaka H, Ikushiro SI, Sakaki T, Yokoi T (2010) Interactions between human UDP-glucuronosyltransferase (UGT) 2B7 and UGT1A enzymes. J Pharm Sci 99:442–454

    CAS  PubMed  Google Scholar 

  • Gagné JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62:608–617

    PubMed  Google Scholar 

  • Gardner-Stephen DA, Mackenzie PI (2008) Liver-enriched transcription factors and their role in regulating UDP glucuronosyltransferase gene expression. Curr Drug Metab 9:439–452

    CAS  PubMed  Google Scholar 

  • Ghosh SS, Sappal BS, Kalpana GV, Lee SW, Roy Chowdhury J, Roy Chowdhury N (2001) Homodimerization of human bilirubin-uridine-diphosphoglucuronate glucuronosyltransferase-1 (UGT1A1) and its functional implications. J Biol Chem 276:42108–42115

    CAS  PubMed  Google Scholar 

  • Gilbert A, Lereboullet P (1901) La cholémie simple familiale. Sem Med 21:241–245

    Google Scholar 

  • Gonzalez FJ (2008) Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metab Pharmacokinet 23:2–7

    CAS  PubMed  Google Scholar 

  • Gschaidmeier H, Bock KW (1994) Radiation inactivation analysis of microsomal UDP-glucuronosyltransferases catalysing mono- and diglucuronide formation of 3,6-dihydroxybenzo(a)pyrene and 3,6-dihydroxychrysene. Biochem Pharmacol 48:1545–1549

    CAS  PubMed  Google Scholar 

  • Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17

    CAS  PubMed  Google Scholar 

  • Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3:136–158

    CAS  PubMed  Google Scholar 

  • Guillemette C, Lévesque E, Harvey M, Bellemare J, Ménard V (2010) UDP-glucuronosyltransferase (UGT) enzyme diversity: beyond gene duplication. Drug Metab Rev 42:24–44

    CAS  PubMed  Google Scholar 

  • Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24:2237–2244

    CAS  PubMed  Google Scholar 

  • Hanioka N, Takeda Y, Jinno H, Tanaka-Kagawa T, Naito S, Koeda A, Shimizu T, Nomura M, Narimatsu S (2006) Functional characterization of human and cynomolgus monkey UDP-glucuronosyltransferase 1A6 enzymes. Chem Biol Interact 164:136–145

    CAS  PubMed  Google Scholar 

  • Hansen AJ, Lee YH, Sterneck E, Gonzalez FJ, Mackenzie PI (1998) C/EBPalpha is a regulator of the UDP glucuronosyltransferase UGT2B1 gene. Mol Pharmacol 53:1027–1033

    CAS  PubMed  Google Scholar 

  • Hauser SC, Ziurys JC, Gollan JL (1988) A membrane transporter mediates access of uridine 5′-diphosphoglucuronic acid from the cytosol into the endoplasmic reticulum of rat hepatocytes: implications for glucuronidation reactions. Biochim Biophys Acta 967:149–157

    CAS  PubMed  Google Scholar 

  • Horecker BL (1950) Triphosphopyridine nucleotide-cytochrome c reductase in liver. J Biol Chem 183:593–605

    CAS  Google Scholar 

  • Huang MJ, Yang SS, Lin MS, Huang CS (2005) Polymorphisms of uridine-diphospho-glucuronosyltransferase 1A7 gene in Taiwan Chinese. World J Gastroenterol 11:797–802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ikushiro S, Kominami S, Takemori S (1992) Adrenal P-450scc modulates activity of P-45011 beta in liposomal and mitochondrial membranes. Implication of P-450scc in zone specificity of aldosterone biosynthesis in bovine adrenal. J Biol Chem 267:1464–1469

    CAS  PubMed  Google Scholar 

  • Ikushiro S, Emi Y, Iyanagi T (1997) Protein–protein interactions between UDP-glucuronosyltransferase isozymes in rat hepatic microsomes. Biochemistry 36:7154–7161

    CAS  PubMed  Google Scholar 

  • Ikushiro S, Emi Y, Iyanagi T (2002) Activation of glucuronidation through reduction of a disulfide bond in rat UDP-glucuronosyltransferase 1A6. Biochemistry 41:12813–12820

    CAS  PubMed  Google Scholar 

  • Ishii Y, Hansen A, Mackenzie PI (2000) Octamer transcription factor-1 enhances hepatic nuclear factor-1-alpha-mediated activation of the human UDP glucuronosyltransferase 2B7 promoter. Mol Pharmacol 57:940–947

    CAS  PubMed  Google Scholar 

  • Ishii Y, Miyoshi A, Watanabe R, Tsuruda K, Tsuda M, Yamaguchi-Nagamatsu Y, Yoshisue K, Tanaka M, Maji D, Ohgiya S, Oguri K (2001) Simultaneous expression of guinea pig UDP-glucuronosyltransferase 2B21 and 2B22 in COS-7 cells enhances UDP-glucuronosyltransferase 2B21-catalyzed morphine-6-glucuronide formation. Mol Pharmacol 60:1040–1048

    CAS  PubMed  Google Scholar 

  • Ishii Y, Iwanaga M, Nishimura Y, Takeda S, Ikushiro S, Nagata K, Yamazoe Y, Mackenzie PI, Yamada H (2007) Protein–protein interactions between rat hepatic cytochromes P450 (P450s) and UDP-glucuronosyltransferases (UGTs): evidence for the functionally active UGT in P450-UGT complex. Drug Metab Pharmacokinet 22:367–376

    CAS  PubMed  Google Scholar 

  • Ishii Y, Nurrochmad A, Yamada H (2010a) Modulation of UDP-glucuronosyltransferase activity by endogenous compounds. Drug Metab Pharmacokinet 25:134–148

    CAS  PubMed  Google Scholar 

  • Ishii Y, Takeda S, Yamada H (2010b) Modulation of UDP-glucuronosyltransferase activity by protein-protein association. Drug Metab Rev 42:145–158

    CAS  PubMed  Google Scholar 

  • Ishii Y, An K, Nishimura Y, Yamada H (2012a) ATP serves as an endogenous inhibitor of UDP-glucuronosyltransferase (UGT): a new insight into the latency of UGT. Drug Metab Dispos 40:2081–2089

    CAS  PubMed  Google Scholar 

  • Ishii Y, Iida N, Miyauchi Y, Mackenzie PI, Yamada H (2012b) Inhibition of morphine glucuronidation in the liver microsomes of rats and humans by monoterpenoid alcohols. Biol Pharm Bull 35:1811–1817

    CAS  PubMed  Google Scholar 

  • Ishii Y, Koba H, Kinoshita K, Oizaki T, Iwamoto Y, Takeda S, Miyauchi Y, Nishimura Y, Egoshi N, Taura F, Morimoto S, Ikushiro S, Nagata K, Yamazoe Y, Mackenzie PI, Yamada H (2014) Alteration of the function of the UDP-Glucuronosyltransferase 1A subfamily by cytochrome P450 3A4: different susceptibility for UGT isoforms and UGT1A1/7 variants. Drug Metab Dispos 42:229–238

    CAS  PubMed  Google Scholar 

  • Iyanagi T (1991) Molecular basis of multiple UDP-glucuronosyltransferase isoenzyme deficiencies in the hyperbilirubinemic rat (Gunn rat). J Biol Chem 266:24048–24052

    CAS  PubMed  Google Scholar 

  • Iyanagi T (2007) Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35–112

    CAS  PubMed  Google Scholar 

  • Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jada SR, Lim R, Wong CI, Shu X, Lee SC, Zhou Q, Goh BC, Chowbay B (2007) Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C > A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci 98:1461–1467

    CAS  PubMed  Google Scholar 

  • Joy MS, Boyette T, Hu Y, Wang J, La M, Hogan SL, Stewart PW, Falk RJ, Dooley MA, Smith PC (2010) Effects of uridine diphosphate glucuronosyltransferase 2B7 and 1A7 pharmacogenomics and patient clinical parameters on steady-state mycophenolic acid pharmacokinetics in glomerulonephritis. Eur J Clin Pharmacol 66:1119–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol Ther 106:97–132

    CAS  PubMed  Google Scholar 

  • Koiwai O, Aono S, Adachi Y, Kamisako T, Yasui Y, Nishizawa M, Sato H (1996) Crigler-Najjar syndrome type II is inherited both as a dominant and as a recessive trait. Hum Mol Genet 5:645–647

    CAS  PubMed  Google Scholar 

  • Kurkela M, Hirvonen J, Kostiainen R, Finel M (2004) The interactions between the N-terminal and C-terminal domains of the human UDP-glucuronosyltransferases are partly isoform-specific, and may involve both monomers. Biochem Pharmacol 68:2443–2450

    CAS  PubMed  Google Scholar 

  • Kurose K, Sugiyama E, Saito Y (2012) Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 27:9–54

    CAS  PubMed  Google Scholar 

  • Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54:1271–1294

    CAS  PubMed  Google Scholar 

  • Lévesque E, Girard H, Journaultm K, Lépinem J, Guillemettem C (2007) Regulation of the UGT1A1 bilirubin-conjugating pathway: role of a new splicing event at the UGT1A locus. Hepatology 45:128–138

    PubMed  Google Scholar 

  • Li D, Fournel-Gigleux S, Barré L, Mulliert G, Netter P, Magdalou J, Ouzzine M (2007) Identification of aspartic acid and histidine residues mediating the reaction mechanism and the substrate specificity of the human UDP-glucuronosyltransferases 1A. J Biol Chem 282:36514–36524

    CAS  PubMed  Google Scholar 

  • Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Roy Chowdhury J, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269

    CAS  PubMed  Google Scholar 

  • Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15:677–685

    CAS  PubMed  Google Scholar 

  • Mackenzie PI, Rogers A, Treloar J, Jorgensen BR, Miners JO, Meech R (2008) Identification of UDP glycosyltransferase 3A1 as a UDP-N-acetylglucosaminyltransferase. J Biol Chem 283:36205–36210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meech R, Mackenzie PI (1997a) UDP-glucuronosyltransferase, the role of the amino terminus in dimerization. J Biol Chem 272:26913–26917

    CAS  PubMed  Google Scholar 

  • Meech R, Mackenzie PI (1997b) Structure and function of uridine diphosphate glucuronosyltransferases. Clin Exp Pharmacol Physiol 24:907–915

    CAS  PubMed  Google Scholar 

  • Meech R, Mackenzie PI (1998) Determinants of UDP glucuronosyltransferase membrane association and residency in the endoplasmic reticulum. Arch Biochem Biophys 356:77–85

    CAS  PubMed  Google Scholar 

  • Miley MJ, Zielinska AK, Keenan JE, Bratton SM, Radominska-Pandya A, Redinbo MR (2007) Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J Mol Biol 369:498–511

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K, Kaniwa N, Sawada J, Hamaguchi T, Yamamoto N, Shirao K, Yamada Y, Ohmatsu H, Kubota K, Yoshida T, Ohtsu A, Saijo N (2007) Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics 17:497–504

    CAS  PubMed  Google Scholar 

  • Miyauchi Y, Ishii Y, Nagata K, Yamazoe Y, Mackenzie PI, and Yamada H (2012) UDP-Glucuronosyltransferase (UGT) 2B7 and 1A9 suppress cytochrome P450 3A4 function: evidence for the involvement of the cytosolic tail of UGT in the suppression. In: Abstracts of papers, 19th International Symposium on Microsomes and Drug Oxidations and 12th European Regional ISSX Meeting, Noordwijk aan Zee, The Netherlands, June 2012

    Google Scholar 

  • Muraoka M, Kawakita M, Ishida N (2001) Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett 495:87–93

    CAS  PubMed  Google Scholar 

  • Muraoka M, Miki T, Ishida N, Hara T, Kawakita M (2007) Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono- and diphosphates. J Biol Chem 282:24615–24622

    CAS  PubMed  Google Scholar 

  • Nakajima M, Yamanaka H, Fujiwara R, Katoh M, Yokoi T (2007) Stereoselective glucuronidation of 5-(4′-hydroxyphenyl)-5-phenylhydantoin by human UDP-glucuronosyltransferase (UGT) 1A1, UGT1A9, and UGT2B15: effects of UGT–UGT interactions. Drug Metab Dispos 35:1679–1686

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Maeda S, Ikushiro S, Mackenzie PI, Ishii Y, Yamada H (2007) Inhibitory effects of adenine nucleotides and related substances on UDP-glucuronosyltransferase: structure–effect relationships and evidence for an allosteric mechanism. Biochim Biophys Acta 1770:1557–1566

    CAS  PubMed  Google Scholar 

  • Nurrochmad A, Ishii Y, Nakanoh H, Inoue T, Horie T, Sugihara K, Ohta S, Taketomi A, Maehara Y, Yamada H (2010) Activation of morphine glucuronidation by fatty acyl-CoAs and its plasticity: a comparative study in humans and rodents including chimeric mice carrying human liver. Drug Metab Pharmacokinet 25:262–273

    CAS  PubMed  Google Scholar 

  • Ockenga J, Vogel A, Teich N, Keim V, Manns MP, Strassburg CP (2003) UDP glucuronosyltransferase (UGT1A7) gene polymorphisms increase the risk of chronic pancreatitis and pancreatic cancer. Gastroenterology 124:1802–1808

    CAS  PubMed  Google Scholar 

  • Oesch-Bartlomowicz B, Oesch F (2008) Phosphorylation of xenobiotic-metabolizing cytochromes P450. Anal Bioanal Chem 392:1085–1092

    CAS  PubMed  Google Scholar 

  • Okamura K, Ishii Y, Ikushiro S, Mackenzie PI, Yamada H (2006) Fatty acyl-CoA as an endogenous activator of UDP-glucuronosyltransferases. Biochem Biophys Res Commun 345:1649–1656

    CAS  PubMed  Google Scholar 

  • Operaña TN, Tukey RH (2007) Oligomerization of the UDP-glucuronosyltransferase 1A proteins: homo- and heterodimerization analysis by fluorescence resonance energy transfer and co-immunoprecipitation. J Biol Chem 282:4821–4829

    PubMed  Google Scholar 

  • Parsons JB, Lawrence AD, McLean KJ, Munro AW, Rigby SE, Warren MJ (2010) Characterisation of PduS, the pdu metabolosome corrin reductase, and evidence of substructural organisation within the bacterial microcompartment. PLoS One 5:e14009

    PubMed Central  PubMed  Google Scholar 

  • Pogell BM, Leloir LF (1961) Nucleotide activation of liver microsomal glucuronidation. J Biol Chem 236:293–298

    CAS  PubMed  Google Scholar 

  • Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI (1999) Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31:817–899

    CAS  PubMed  Google Scholar 

  • Reed JR, Eyer M, Backes WL (2010) Functional interactions between cytochromes P450 1A2 and 2B4 require both enzymes to reside in the same phospholipid vesicle: evidence for physical complex formation. J Biol Chem 285:8942–8952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS (1992) A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 267:3257–3261

    CAS  PubMed  Google Scholar 

  • Ritter JK, Yeatman MT, Kaiser C, Gridelli B, Owens IS (1993) A phenylalanine codon deletion at the UGT1 gene complex locus of a Crigler-Najjar type I patient generates a pH-sensitive bilirubin UDP-glucuronosyltransferase. J Biol Chem 268:23573–23579

    CAS  PubMed  Google Scholar 

  • Roizin L (1963) Mitochondria (pleomorpho metabolosomes) as histometabolic gradients. (Effects of prochlorperazine on the rat brain as revealed by electron microscope.) Dis Nerv Syst 24(4 pt 2):61–66

    Google Scholar 

  • Rosner GL, Panetta JC, Innocenti F, Ratain MJ (2008) Pharmacogenetic pathway analysis of irinotecan. Clin Pharmacol Ther 84:393–402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H, Hasegawa R, Kaniwa N, Sawada J, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kitamura Y, Kamatani N, Minami H, Ohtsu A, Shirao K, Yoshida T, Saijo N (2004) UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 75:501–515

    CAS  PubMed  Google Scholar 

  • Shepherd SR, Baird SJ, Hallinan T, Burchell B (1989) An investigation of the transverse topology of bilirubin UDP-glucuronosyltransferase in rat hepatic endoplasmic reticulum. Biochem J 259:617–620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  • Shimomura K, Kamata O, Ueki S, Ida S, Oguri K, Yoshimura H, Tsukamoto H (1971) Analgesic effect of morphine glucuronides. Tohoku J Exp Med 105:45–52

    CAS  PubMed  Google Scholar 

  • Strassburg CP, Vogel A, Kneip S, Tukey RH, Manns MP (2002) Polymorphisms of the human UDP-glucuronosyltransferase (UGT) 1A7 gene in colorectal cancer. Gut 50:851–856

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strittmatter CF, Ball EG (1951) A hemochromogen component of liver microsomes. Proc Natl Acad Sci USA 38:19–25

    Google Scholar 

  • Subramanian M, Low M, Locuson CW, Tracy TS (2009) CYP2D6-CYP2C9 protein–protein interactions and isoform-selective effects on substrate binding and catalysis. Drug Metab Dispos 37:1682–1689

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sugatani J (2013) Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet 28:83–92

    CAS  PubMed  Google Scholar 

  • Takeda S, Ishii Y, Iwanaga M, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2005a) Modulation of UDP-glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7-catalyzed glucuronidation of morphine by CYP3A4. Mol Pharmacol 67:665–672

    CAS  PubMed  Google Scholar 

  • Takeda S, Ishii Y, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2005b) Modulation of UDP-glucuronosyltransferase 2B7 function by cytochrome P450s in vitro: differential effects of CYP1A2, CYP2C9 and CYP3A4. Biol Pharm Bull 28:2026–2027

    CAS  PubMed  Google Scholar 

  • Takeda S, Kitajima Y, Ishii Y, Nishimura Y, Mackenzie PI, Oguri K, Yamada H (2006) Inhibition of UDP-glucuronosyltransferase 2B7-catalyzed morphine glucuronidation by ketoconazole: dual mechanisms involving a novel noncompetitive mode. Drug Metab Dispos 34:1277–1282

    CAS  PubMed  Google Scholar 

  • Takeda S, Ishii Y, Iwanaga M, Nurrochmad A, Ito Y, Mackenzie PI, Nagata K, Yamazoe Y, Oguri K, Yamada H (2009) Interaction of cytochrome P450 3A4 and UDP-glucuronosyltransferase 2B7: evidence for protein–protein association and possible involvement of CYP3A4 J-helix in the interaction. Mol Pharmacol 75:956–964

    CAS  PubMed  Google Scholar 

  • Taura K, Yamada H, Hagino Y, Ishii Y, Mori M, Oguri K (2000) Interaction between cytochrome P450 and other drug-metabolizing enzymes: evidence for an association of CYP1A1 with microsomal epoxide hydrolase and UDP-glucuronosyltransferase. Biochem Biophys Res Commun 273:1048–1052

    CAS  PubMed  Google Scholar 

  • Taura K, Yamada H, Naito E, Ariyoshi N, Mori M, Oguri K (2002) Activation of microsomal epoxide hydrolase by interaction with cytochromes P450: kinetic analysis of the association and substrate-specific activation of epoxide hydrolase function. Arch Biochem Biophys 402:275–280

    CAS  Google Scholar 

  • te Morsche RH, Drenth JP, Truninger K, Schulz HU, Kage A, Landt O, Verlaan M, Rosendahl J, Macek M Jr, Jansen JB, Witt H (2008) UGT1A7 polymorphisms in chronic pancreatitis: an example of genotyping pitfalls. Pharmacogenomics J 8:34–41

    Google Scholar 

  • Thomassin J, Tephly TR (1990) Photoaffinity labeling of rat liver microsomal morphine UDP-glucuronosyltransferase by [3H]flunitrazepam. Mol Pharmacol 38:294–298

    CAS  PubMed  Google Scholar 

  • Timsit YE, Negishi M (2007) CAR and PXR: the xenobiotic-sensing receptors. Steroids 72:231–246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO (2004) Human UDP-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413–423

    CAS  PubMed  Google Scholar 

  • Vanstapel F, Blanckaert N (1988) Topology and regulation of bilirubin UDP-glucuronyltransferase in sealed native microsomes from rat liver. Arch Biochem Biophys 263:216–225

    CAS  PubMed  Google Scholar 

  • Verlaan M, Drenth JP, Truninger K, Koudova M, Schulz HU, Bargetzi M, Künzli B, Friess H, Cerny M, Kage A, Landt O, te Morsche RH, Rosendahl J, Luck W, Nickel R, Halangk J, Becker M, Macek M Jr, Jansen JB, Witt H (2005) Polymorphisms of UDP-glucuronosyltransferase 1A7 are not involved in pancreatic diseases. J Med Genet 42:e62

    PubMed Central  CAS  PubMed  Google Scholar 

  • Villeneuve L, Girard H, Fortier LC, Gagné JF, Guillemette C (2003) Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 307:117–128

    CAS  PubMed  Google Scholar 

  • Vogel A, Kneip S, Barut A, Ehmer U, Tukey RH, Manns MP, Strassburg CP (2001) Genetic link of hepatocellular carcinoma with polymorphisms of the UDP-glucuronosyltransferase UGT1A7 gene. Gastroenterology 121:1136–1144

    CAS  PubMed  Google Scholar 

  • Wade AE (1986) Effects of dietary fat on drug metabolism. J Environ Pathol Toxicol Oncol 6:161–189

    CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    CAS  PubMed  Google Scholar 

  • Yamazaki H, Gillam EMJ, Dong MS, Johnson WW, Guengerich FP, Shimada T (1997) Reconstitution of recombinant cytochrome P450 2C10(2C9) and comparison with cytochrome P450 3A4 and other forms: effects of cytochrome P450-P450 and cytochrome P450-b5 interactions. Arch Biochem Biophys 342:329–337

    CAS  PubMed  Google Scholar 

  • Yokoi T, Nakajima M (2013) MicroRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol 53:377–400

    CAS  PubMed  Google Scholar 

  • Yong WP, Ramirez J, Innocenti F, Ratain MJ (2005) Effects of ketoconazole on glucuronidation by UDP-glucuronosyltransferase enzymes. Clin Cancer Res 11:6699–6704

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies carried out in our laboratory were supported in part by Grants in Aids from the Ministry of Technology, Education, Science, and Sports or the Japanese Society for the Promotion of Science. The authors thank collaborators Dr. Mackenzie in Flinders University, Dr. Nagata in Tohoku Pharmaceutical University, Dr. Yamazoe in the Graduate School of Pharmaceutical Sciences, Tohoku University (present address: Cabinet Office, Government of Japan), Dr. Ikushiro in Toyama Prefectural University, Dr. Taketomi in Hokkaido University School of Medicine, and Dr. Maehara in the Graduate School of Medical Science, Kyushu University. The authors are also very grateful to their former mentor and professor emeritus, the late Dr. Oguri. They also thank all the staff and graduate and undergraduate students in the Laboratory of Molecular Life Sciences, Kyushu University who were involved in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ishii, Y., Miyauchi, Y., Yamada, H. (2014). Cytochrome P450-Dependent Change in UDP-Glucuronosyltransferase Function and Its Reverse Regulation. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_18

Download citation

Publish with us

Policies and ethics