Skip to main content

Minimum Genome Factories in Schizosaccharomyces pombe

  • Chapter
  • First Online:
Microbial Production

Abstract

This chapter gives an overview of the “minimum genome factory” (MGF) of the fission yeast Schizosaccharomyces pombe (S. pombe). The S. pombe genome is one of the smallest found in free-living eukaryotes. We engineered a reduction in the number of S. pombe genes using a large-scale gene deletion method called the LATOUR method. This method enabled us to identify the minimum gene set required for growth under laboratory conditions. The genome-reduced strain has four deleted regions: 168.4 kb of the left arm of chromosome I; 155.4 kb of the right arm of chromosome I; 211.7 kb of the left arm of chromosome II; and 121.6 kb of the right arm of chromosome II. These changes represent a loss of 223 genes of an estimated 5,100. The 657.3-kb deletion strain was less efficient at taking up glucose and some amino acids from the growth media than the parental strain. This strain also showed increased gene expression of the mating pheromone M-factor precursor and NADP-specific glutamate dehydrogenase. There was also a 2.7-fold increase in the concentration of cellular ATP, whereas levels of heterologously produced proteins, such as the green fluorescent protein and the secreted human growth hormone, increased by 1.7 fold and 1.8 fold, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ara K, Ozaki K, Nakamura K et al (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46(pt 3):169–178

    CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:20060008. doi:2010.1038/msb4100050

    Article  Google Scholar 

  • Decottignies A, Sanchez-Perez I, Nurse P (2003) Schizosaccharomyces pombe essential genes: a pilot study. Genome Res 13(3):399–406

    Article  CAS  PubMed  Google Scholar 

  • Fantes P, Nurse P (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107(2):377–386

    Article  CAS  PubMed  Google Scholar 

  • Fujio T (2007) Minimum genome factory: innovation in bioprocesses through genome science. Biotechnol Appl Biochem 46(pt 3):145–146

    CAS  PubMed  Google Scholar 

  • Giga-Hama Y, Tohda H, Takegawa K et al (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):147–155

    CAS  PubMed  Google Scholar 

  • Hirashima K, Iwaki T, Takegawa K et al (2006) A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acids Res 34(2):e11. doi:10.1093/nar/gnj1011

    Article  PubMed Central  PubMed  Google Scholar 

  • Idiris A, Tohda H, Bi KW et al (2006) Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 73(2):404–420

    Article  CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Sasaki M et al (2009) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85(3):667–677

    Article  PubMed  Google Scholar 

  • Idiris A, Tohda H, Kumagai H et al (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417

    Article  CAS  PubMed  Google Scholar 

  • Kim DU, Hayles J, Kim D et al (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28(6):617–623

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100(8):4678–4683

    Article  CAS  PubMed  Google Scholar 

  • Manabe K, Kageyama Y, Morimoto T et al (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 77(23):8370–8381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuo T, Otsubo Y, Urano J et al (2007) Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 27(8):3154–3164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medema MH, van Raaphorst R, Takano E et al (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10(3):191–202

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi H, Mori H, Fujio T (2007) Escherichia coli minimum genome factory. Biotechnol Appl Biochem 46(Pt 3):157–167

    CAS  PubMed  Google Scholar 

  • Mizoguchi H, Sawano Y, Kato J et al (2008) Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res 15(5):277–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto T, Kadoya R, Endo K et al (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15(2):73–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moya A, Gil R, Latorre A et al (2009) Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev 33(1):225–235

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Tao E, Ito Y et al (2007) Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75(3):589–597

    Article  CAS  PubMed  Google Scholar 

  • Posfai G, Plunkett G 3rd, Feher T et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Kumagai H, Takegawa K et al (2013) Characterization of genome-reduced fission yeast strains. Nucleic Acids Res 41(10):5382–5399

    Article  PubMed Central  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature (Lond) 415(6874):871–880

    Article  CAS  Google Scholar 

  • Zhao Y, Lieberman HB (1995) Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol 14(5):359–371

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Ministry of Economy, Trade and Industry (Project for the Development of a Technological Infrastructure for Industrial Bioprocesses on Research and Development of New Industrial Science and Technology Frontiers supported by New Energy and Industrial Technology Development Organization). We are sincerely grateful to the late Yuko Giga-Hama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Kumagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kumagai, H., Sasaki, M., Idiris, A., Tohda, H. (2014). Minimum Genome Factories in Schizosaccharomyces pombe . In: Anazawa, H., Shimizu, S. (eds) Microbial Production. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54607-8_2

Download citation

Publish with us

Policies and ethics