Skip to main content

Approaches for Improving Protein Production by Cell Surface Engineering

  • Chapter
  • First Online:
Microbial Production
  • 2001 Accesses

Abstract

Bacillus subtilis is an attractive host organism because it has a naturally high secretory capacity and exports proteins directly into the extracellular medium. Secreted proteins emerge from translocation to the compartment between the cell wall and cytoplasmic membrane. It has been reported that the increased net negative charge of the cell wall is involved in protein folding and stability at the cytoplasmic membrane–cell wall interface of B. subtilis. In Escherichia coli, Sec translocase requires a functional interaction with the membrane acidic lipids such as phosphatidylglycerol (PG) and cardiolipin (CL). In Sect. 13.1, we describe altered compositions of anionic polymers on the cell surface and cell membrane lipid of B. subtilis, which is improved for protein secretion. Inactivation of extracellular proteases is essential for improvement of secreted proteins with B. subtilis as a host. Previously we reported that the decrease of extracellular protease amounts in B. subtilis mutants led to the stabilization of autolysins, making the cells more prone to lysis (Kodama et al., J Biosci Bioeng 103:13–21, 2007). In Sect. 13.2, we describe the improvement process for protein production from the aspect of prevention of cell lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogdanov M, Heacock PN, Dowhan W (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw E, te Kaat K, Moser C et al (2000) Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J 19:531–541

    Article  PubMed  Google Scholar 

  • de Vrije T, de Swart RL, Dowhan W et al (1988) Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature (Lond) 334:173–175

    Article  Google Scholar 

  • Ellwood DC, Tempest DW (1969) Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var. niger. Biochem J 111:1–5

    CAS  PubMed  Google Scholar 

  • Fahnestock SR, Fisher KE (1987) Protease-deficient Bacillus subtilis host strains for production of staphylococcal protein A. Appl Environ Microbiol 53:379–384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushima T, Afkham A, Kurosawa S et al (2006) A new d,l-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis. J Bacteriol 188:5541–5550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushima T, Kitajima T, Yamaguchi H et al (2008) Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting N-acetylmuramidase and d,l-endopeptidase activities. J Biol Chem 283:11117–11125

    Article  CAS  PubMed  Google Scholar 

  • Hagihara H, Hayashi Y, Endo K et al (2001) Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 67:1744–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakamada Y, Hatada Y, Koike K et al (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic Bacillus strain. Biosci Biotechnol Biochem 64:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Hughes AH, Hancock IC, Baddiley J (1973) The function of teichoic acids in cation control in bacterial membranes. Biochem J 132:83–93

    CAS  PubMed  Google Scholar 

  • Hyyryläinen HL, Vitikainen M, Thwaite J et al (2000) d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem 275:26696–26703

    PubMed  Google Scholar 

  • Hyyryläinen HL, Pietiäinen M, Lundén T et al (2007) The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology 153:2126–2136

    Article  PubMed  Google Scholar 

  • Ishikawa S, Hara Y, Ohnishi R et al (1998) Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 180:549–2555

    Google Scholar 

  • Kobayashi T, Hatada Y, Adachi S et al (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Sudiarta IP, Kodama T et al (2012) Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J Biol Chem 287:9765–9776

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Endo K, Ara K et al (2007) Effect of Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis. J Biosci Bioeng 103:13–21

    Article  CAS  PubMed  Google Scholar 

  • Kuroda A, Sekiguchi J (1991) Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 173:304–312

    Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. J Microbiol Mol Biol Rev 67:686–723

    Article  CAS  Google Scholar 

  • Nonaka T, Fujihashi M, Kita A et al (2004) The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal beta-barrel domain. Biol Chem 279:47344–47351

    Article  CAS  Google Scholar 

  • Ohnishi R, Ishikawa S, Sekiguchi J (1999) Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 181:3178–3184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rashid MH, Mori M, Sekiguchi J (1995) Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141:2391–2404

    Article  CAS  PubMed  Google Scholar 

  • Sudiarta IP, Fukushima T, Sekiguchi J (2010a) Bacillus subtilis CwlP of the SP-β prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting d,d-endopeptidase. J Biol Chem 285:41232–41243

    Article  CAS  PubMed  Google Scholar 

  • Sudiarta IP, Fukushima T, Sekiguchi J (2010b) Bacillus subtilis CwlQ (previous YjbJ) is a bifunctional enzyme exhibiting muramidase and soluble-lytic transglycosylase activities. Biochem Biophys Res Commun 398:606–612

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Furuhata K, Fukushima T et al (2004) Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng 98:174–181

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kurosawa S, Sekiguchi J (2003) Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol 185:6666–6677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto H, Hashimoto M, Higashitsuji Y et al (2008) Post-translational control of vegetative cell separation enzymes through a direct interaction with specific inhibitor IseA in Bacillus subtilis. Mol Microbiol 70:168–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sekiguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kodama, T., Manabe, K., Ara, K., Sekiguchi, J. (2014). Approaches for Improving Protein Production by Cell Surface Engineering. In: Anazawa, H., Shimizu, S. (eds) Microbial Production. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54607-8_13

Download citation

Publish with us

Policies and ethics