Skip to main content

Insights into Metabolism and the Galactose Recognition System from Microarray Analysis in the Fission Yeast Schizosaccharomyces pombe

  • Chapter
  • First Online:
Microbial Production
  • 2012 Accesses

Abstract

The fission yeast Schizosaccharomyces pombe is a promising host for production of heterologous proteins. However, the oligosaccharide structures of yeasts, including S. pombe, differ significantly from those of mammalian cells and humans. In S. pombe, galactose residues are transferred to oligosaccharide moieties of glycoproteins by galactosyltransferases in the lumen of the Golgi apparatus. Therefore, UDP-galactose, a substrate for galactosyltransferases, should be synthesized in the cytosol, and transported into the Golgi apparatus by a UDP-galactose transporter. Because S. pombe cannot use galactose as a carbon or energy source, little is known about galactose metabolism in this species. A galactose-assimilating mutant of S. pombe that was able to grow in minimal galactose medium was isolated. Through DNA microarray analysis of gene expression profiles in the wild type and the mutant, three gal genes (gal7 +, gal10 +, and gal1 +) involved in galactose utilization were found to be highly expressed in the mutant. Although galactose residues are not essential for growth of S. pombe, galactosylation of protein is required for maintenance of normal cell shape, tolerance toward various drugs, and nonsexual flocculation. We identified fission yeast gsf2 +, encoding a flocculin that binds galactose residues located on cell-surface glycoconjugates by DNA microarray analysis. S. pombe appears to have a unique galactose-specific recognition system in which Gsf2/flocculin plays an essential role in mediating cell–cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreishcheva EN, Kunkel JP, Gemmill TR et al (2004) Five genes involved in biosynthesis of the pyruvylated Galbeta1,3-epitope in Schizosaccharomyces pombe N-linked glycans. J Biol Chem 279:35644–35655

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Tohda H, Giga-Hama Y et al (2006) Heat shock-inducible expression vectors for use in Schizosaccharomyces pombe. FEMS Yeast Res 6:883–887

    Article  CAS  PubMed  Google Scholar 

  • Gemmill TR, Trimble RB (1996) Schizosaccharomyces pombe produces novel pyruvate-containing N-linked oligosaccharides. J Biol Chem 271:25945–25949

    Article  CAS  PubMed  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    Article  CAS  PubMed  Google Scholar 

  • Giga-Hama Y, Tohda H, Takegawa K et al (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46:147–155

    Article  CAS  PubMed  Google Scholar 

  • Goossens K, Willaert R (2010) Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett 32:1571–1585

    Article  CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Kumagai H et al (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Ohashi T, Tanaka N et al (2009) Identification and characterization of a gene required for α1,2-mannose extension in the O-linked glycan synthesis pathway Schizosaccharomyces pombe. FEMS Yeast Res 9:115–125

    Article  CAS  PubMed  Google Scholar 

  • Kanoh J, Sadaie M, Urano T et al (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 25:1808–1819

    Article  Google Scholar 

  • Kobayashi O, Suda H, Ohtani T et al (1996) Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251:707–715

    CAS  PubMed  Google Scholar 

  • Lackner DH, Bähler J (2008) Translational control of gene expression from transcripts to transcriptomes. Int Rev Cell Mol Biol 271:199–251

    Article  CAS  PubMed  Google Scholar 

  • Marguerat S, Schmidt A, Codlin S et al (2012) Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151:671–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzawa T, Fujita Y, Tanaka N et al (2011a) New insights into galactose metabolism by Schizosaccharomyces pombe: isolation of a galactose-assimilating mutant. J Biosci Bioeng 111:158–166

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa T, Morita T, Tanaka N et al (2011b) Identification of a galactose-specific flocculin essential for nonsexual flocculation and hyphal growth in Schizosaccharomyces pombe. Mol Microbiol 82:1531–1544

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa T, Yoritsune K, Takegawa K (2012) MADS box transcription factor Mbx2/Pvg4 regulates invasive growth and flocculation by inducing gsf2 + expression in fission yeast. Eukaryot Cell 11:151–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzawa T, Hara F, Tanaka N et al (2013a) ght2 + is required for UDP-galactose synthesis from extracellular galactose by Schizosaccharomyces pombe. Appl Microbiol Biotechnol 97:4957–4964

    Google Scholar 

  • Matsuzawa T, Kageyama Y, Ooishi K et al (2013b) The zinc finger protein Gsf1 regulates Gsf2-dependent flocculation in fission yeast. FEMS Yeast Res 13:259–266

    Google Scholar 

  • Ohashi T, Takegawa K (2010) N- and O-linked oligosaccharides completely lack galactose residues in the gms1och1 mutant of Schizosaccharomyces pombe. Appl Microbiol Biotechnol 86:263–272

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Ikeda Y, Tanaka N et al (2009) The och1 mutant of Schizosaccharomyces pombe produces galactosylated core structures of N-linked oligosaccharides. Biosci Biotechnol Biochem 73:407–414

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Nakakita S, Sumiyoshi W et al (2010) Production of heterologous glycoproteins by a glycosylation-defective alg3och1 mutant of Schizosaccharomyces pombe. J Biotechnol 150:348–356

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Nakakita S, Sumiyoshi W et al (2011) Structural analysis of α1,3-linked galactose-containing oligosaccharides in Schizosaccharomyces pombe mutants harboring single and multiple α-galactosyltransferase genes disruptions. Glycobiology 21:340–351

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Fujiyama K, Takegawa K (2012) Identification of novel α1,3-galactosyltransferase and elimination of α-galactose-containing glycans by disruption of multiple α-galactosyltransferase genes in Schizosaccharomyces pombe. J Biol Chem 287:38866–38875

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Texeira M (2005) A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 5:1115–1128

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Matsuzawa T, Nukigi Y et al (2010) Characterization of two different types of UDP-glucose/-galactose 4-epimerase involved in galactosylation in fission yeast. Microbiology 156:708–718

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Tanaka N, Iwahara S et al (1997) The Schizosaccharomyces pombe gms1 + gene encodes an UDP-galactose transporter homologue required for protein galactosylation. Biochem Biophys Res Commun 232:121–125

    Article  CAS  PubMed  Google Scholar 

  • Takegawa K, Tohda H, Sasaki M et al (2009) Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 53:227–235

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Awai A, Bhuiyan MSA et al (1999) Cell surface galactosylation is essential for nonsexual flocculation in Schizosaccharomyces pombe. J Bacteriol 181:1356–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veelders M, Bruckner S, Ott D et al (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA 107:22511–22516

    Article  CAS  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature (Lond) 415:871–880

    Article  CAS  Google Scholar 

  • Yoko-o T, Roy SK, Jigami Y (1998) Differences in in vivo acceptor specificity of two galactosyltransferases, the gmh3+ and gma12+ gene products from Schizosaccharomyces pombe. Eur J Biochem 257:630–637

    Article  CAS  PubMed  Google Scholar 

  • Yoritune K, Matsuzawa T, Ohashi T et al (2013) The fission yeast Pvg1p shows galactose-specific pyruvyltransferase activity. FEBS Lett 587:917–921

    Google Scholar 

  • Zhao Y, Lieberman HB (1995) Schizosaccharomyces pombe: a model for molecular studies of eukaryotic genes. DNA Cell Biol 14:359–371

    Article  CAS  PubMed  Google Scholar 

  • Ziegler FD, Cavanagh J, Lubowski C et al (1999) Novel Schizosaccharomyces pombe N-linked GalMan9GlcNac isomers. Role of the Golgi GMA12 galactosyltransferase in core glycan galactosylation. Glycobiology 9:497–505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Takegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takegawa, K., Matsuzawa, T. (2014). Insights into Metabolism and the Galactose Recognition System from Microarray Analysis in the Fission Yeast Schizosaccharomyces pombe . In: Anazawa, H., Shimizu, S. (eds) Microbial Production. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54607-8_10

Download citation

Publish with us

Policies and ethics