Advertisement

Radiofrequency Biology: In vivo

  • Masamichi Kato

Keywords

Mobile Phone Japanese Encephalitis Virus Cellular Phone Microwave Pulse Time Division Multiple Access 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.9 References

  1. Adair ER, Adams BW, Hertman SK (1992) Physiological interaction processes and radio-frequency energy absorption. Bioelectromagnetics 13:497–512.CrossRefGoogle Scholar
  2. Adair ER, Mylacraine KS, Cobb BL (2001a) Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses. Bioelectromagnetics 22:246–259.CrossRefGoogle Scholar
  3. Adair ER, Mylacraine KS, Cobb BL (2001b) Human exposure to 2450 MHz CW energy at levels outside the IEEE C95.1 standard does not increase core temperature. Bioelectromagnetics 22:429–439.CrossRefGoogle Scholar
  4. Adair ER, Mylacraine KS, Allen SJ (2003) Thermophysiological consequences of whole body resonant RF exposure (100 MHz) in human volunteers. Bioelectromagnetics 24:489–501.CrossRefGoogle Scholar
  5. Adair ER, Cobb BL, Mylacraine KS, Kelleher SA (1999) Human exposure at two radio frequencies (450 and 2450 MHz): similarities and differences in physiological response. Bioelectromagnetics Suppl 4:12–20.CrossRefGoogle Scholar
  6. Adair ER, Kelleher SA, Mack GW, Morocco TS (1998) Thermophysiological responses of human volunteers during controlled whole-body radio frequency exposure at 450 MHz. Bioelectromagnetics 19:232–245.CrossRefGoogle Scholar
  7. Adair ER, Spiers DE, Rawson RO, Adams BW, Sheldon DK, Pivirotte PJ, Akel GM (1985) Thermoregulatory consequences of long-term microwave exposure at controlled ambient temperatures. Bioelectromagnetics 6:339–363.CrossRefGoogle Scholar
  8. Albert EN, Sherif MF, Papadopoulos NJ (1981a) Effect of nonionizing radiation on the Purkinje cells of the uvula in a squirrel monkey cerebellum. Bioelectromagnetics 2:241–246.CrossRefGoogle Scholar
  9. Albert EN, Sherif MF, Papadopoulos NJ, Slaby FJ, Monahan J (1981b) Effect of nonionizing radiation on the Purkinje cells of the rat cerebellum. Bioelectromagnetics 2:247–257.CrossRefGoogle Scholar
  10. Andersson B, Berg M, Arnetz BB, Melin L, Langlet I, Liden S (1996) A cognitive-behavioral treatment of patients suffering from ‘electric hypersensitivity’. J Occupat Environ Med 38:752–758.CrossRefGoogle Scholar
  11. Arai N, Enomoto H, Okabe S, Yuasa K, Kamimura Y, Ugawa Y (2003) Thirty minutes mobile phone use has no short-term adverse effects on central auditory pathways. Clin Neurophysiol 114:1390–1394.CrossRefGoogle Scholar
  12. Baddeley AD (1986): Working Memory. Oxford: Clarendon Press.Google Scholar
  13. Bak M, Sliwinska-Kowalska M, Zmyslony M, Dudarewicz A (2003) No effects of acute exposure to the electromagnetic field emitted by mobile phones on brainstem auditory potentials in young volunteers. Int J Occup Med Environ Health 16:201–208.Google Scholar
  14. Bakos J, Kubinyi G, Sinay H, Thuroczy G (2003) GSM modulated radiofrequency radiation does not affect 6-sulfatoxy-melatonin excretion of rats. Bioelectromagnetics 24:531–534.CrossRefGoogle Scholar
  15. Bartsch H, Bartsch C, Sebald E, Deerberg F, Dietz K, Vollrath L, Mecke D (2002) Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats: results of three consecutive studies. Radiat Res 157:183–190.CrossRefGoogle Scholar
  16. Borbely AA (2001) From slow waves to sleep homeostasis: New perspectives. Arch Ital Biol 130:53–61.Google Scholar
  17. Borbely AA, Huber R, Graf T, Fuchs B, Gallmann E, Achermann P (1999) Pulsed highfrequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci Lett 275:207–210.CrossRefGoogle Scholar
  18. Bortkiewicz A, Pilacik B, Gadzicka E, Szymczak W(2002): The excretion of 6-hydroxymelatonin sulfate in healthy young men exposed to electromagnetic fields emitted by cellular phone an experimental study. Neuroendocrinol Lett 23 (Suppl 1):88–91.Google Scholar
  19. Braune S, Riedel A, Schulte-Monting J, Raczek J (2002) Influence of a radiofrequency electromagnetic field on cardiovascular and hormonal parameters of the autonomic nervous system in healthy individuals. Radiat Res 158:352–356.CrossRefGoogle Scholar
  20. Burch JB, Reif JS, Noonan CW, Ichinose T, Bachand AM, Koleber TL, Yost MG(2002) Melatonin metabolite excretion among cellular telephone users. Int J Radiat Biol 78:1029–1036.CrossRefGoogle Scholar
  21. Chalfin S, D’Andrea JA, Comeau PD, Belt ME, Hatcher DJ (2002) Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz. Health Phys 83:83–90.CrossRefGoogle Scholar
  22. Chizhenkova RA (1988) Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves. Bioelectromagnetics 9:337–345.CrossRefGoogle Scholar
  23. Chou C, Galambos R (1979) Middle-ear structures contribute little to auditory perception of microwaves. J Microw Power 14:321–326.Google Scholar
  24. Chou C-K, Guy AW (1978) Effects of electromagnetic fields on isolated nerve and muscle preparation. IEEE Trans MTT 26:141–147.CrossRefGoogle Scholar
  25. Chou CK, Guy AW (1979) Carbon-loaded Teflon electrodes for chronic EEG recordings in microwave research. J Microw Power 14:399–404.Google Scholar
  26. Chou C, Galambos R, Guy AW, Lovely RH (1975) Cochlear microphonics generated by microwave pulses. J Microw Power 10:361–367.Google Scholar
  27. Chou CK, Guy AW, Borneman LE, Kunz LL, Kramar P (1983) Chronic exposure of rabbits to 0.5 and 5 mW/cm2 2450 MHz CWmicrowave radiation. Bioelectromagnetics 4:63–77.Google Scholar
  28. Cobb BL, Jauchem JR, Adair ER (2004) Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 25:49–57.CrossRefGoogle Scholar
  29. COMAR Technical Information Statement (2002) Electromagnetic hypersensitivity. IEEE Eng Med Biol Sept/Oct:173–175.Google Scholar
  30. Cosquer B, Galani R, Kuster N, Cessel JC (2005) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 156:65–74.CrossRefGoogle Scholar
  31. Courtney KR, Lin JC, Guy AW, Chou C-K (1975) Microwave effect on rabbit superior cervical ganglion. IEEE Trans Microwave Theory Tech 23:809–813.CrossRefGoogle Scholar
  32. Daily L Jr, Watkim KG, Herrick JF, Parkhill EM, Benedict WL (1950) The effects of microwave diathermy on the eye. Am J Ophthalmol 33:1241–1254.Google Scholar
  33. D’Andrea JA, Cobb BL, de Lorge JO (1989) Lack of behavioral effects in the rhesus monkey: high peak microwave pulses at 1.3 GHz. Bioelectromagnetics 10:65–76.CrossRefGoogle Scholar
  34. de Seze R, Fabbro-Peray P, Miro L (1998) GSM radiocellular telephones do not disturb the secretion of anterior pituitary hormones in humans. Bioelectromagnetics 19:271–278.CrossRefGoogle Scholar
  35. de Seze R, Ayoub J, Peray P, Miro L, Touitou Y (1999) Evaluation in humans of the effects of radiocellular telephones on the circadian patterns of melatonin secretion, a chronobiological rhythm marker. J Pineal Res 27:237–242.Google Scholar
  36. Dubreuil D, Jay T, Edeline JM (2002) Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav Brain Res 129:203–210.CrossRefGoogle Scholar
  37. Dubreuil D, Jay T, Edeline JM (2003) Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res 145:51–61.CrossRefGoogle Scholar
  38. Edelstyn N, Oldershaw A (2002) The acute effects of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport 13:119–121.CrossRefGoogle Scholar
  39. Elder JA (2003) Ocular effects of radiofrequency energy. Bioelectromagnetics Suppl 6:S148–S161.CrossRefGoogle Scholar
  40. Elder JA, Chou CK (2003) Auditory response to pulsed radiofrequency energy. Bioelectromagnetics Suppl 6:S162–S173.CrossRefGoogle Scholar
  41. Finnie JW, Blumbergs PC, Manavis J, Utteridge TD, Gebeski V, Vernon-Roberts B, Kuchel TR (2001) Effects of global system for mobile communication (GSM)-like radiofrequency fields on vascular permeability in mouse brain. Pathology 33:338–340.CrossRefGoogle Scholar
  42. Finnie JW, Blumbergs PC, Manavis J, Utteridge TD, Gebski V, Davies RA, Vernon-Roberts B, Kuchel TR (2004) Effect of long-term mobile communication microwave exposure on vascular permeability in mouse brain. Pathology 36:96–97.CrossRefGoogle Scholar
  43. Flodin U, Seneby A, Tegenfeldt C (2000) Provocation of electric hypersensitivity under everyday conditions. Scand J Work Environ Health 26:93–98.Google Scholar
  44. Foster KR, Finch ED (1974) Microwave hearing: Evidence for thermoacoustic auditory stimulation by pulsed microwaves. Science 185:256–258.CrossRefGoogle Scholar
  45. Foster MR, Ferri ES, Hagan GJ (1986): Dosimetric study of microwave cataractogenesis. Bioelectromagnetics 7:129–140.CrossRefGoogle Scholar
  46. Freude G, Ullsperger P, Eggert S, Ruppe I (1998) Effects of microwaves emitted by cellular phones on human slow brain potentials. Bioelectromagnetics 19:384–387.CrossRefGoogle Scholar
  47. Freude G, Ullsperger P, Eggert S, Ruppe I (2000) Microwaves emitted by cellular telephones affect human slow brain potentials. Eur J Appl Physiol 81:18–27.CrossRefGoogle Scholar
  48. Fritze K, Sommer C, Schmitz B, Mies G, Hossmann KA, Kiessling M, Wiessner C (1997) Effect of global system for mobile communication (GSM) microwave exposure on bloodbrain permeability in rat. Acta Neuropathol (Berl) 94:465–470.CrossRefGoogle Scholar
  49. Gandhi VC, Ross DH (1987) Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation. Radiat Res 109:90–99.CrossRefGoogle Scholar
  50. Haarala C, Ek M, Bjornberg L, Laine M, Revonsuo A, Koivisto M, Hamalainen H (2004) 902 MHz mobile phone does not affect short term memory in humans. Bioelectromagnetics 25:452–456.CrossRefGoogle Scholar
  51. Haro E, Lagroye E, Leveque P et al. (2005) Effects on brains of Fisher 344 rats of exposure to GSM-900 signals: Preliminary data of a confirmation study of the 2003 Salford experiments. Proc Bioelectromagnetics Soc, Poster A-133.Google Scholar
  52. Hata K, Yamaguchi H, Tsurita G, Watanabe S, Wake K, Taki M, Ueno S, Nagawa H (2005) Short-term exposure to 1439 MHz TDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics 26:49–53.CrossRefGoogle Scholar
  53. Hietanen M, Hamalainen AM, Husman T (2002) Hypersensitivity symptoms associated with exposure to cellular telephones: No causal link. Bioelectromagnetics 23:264–270.CrossRefGoogle Scholar
  54. Hietanen M, Kovala T, Hamalainen AM (2000) Human brain activity during exposure to radiofrequency fields emitted by cellular phones. Scand J Work Environ Health 26:85–86.Google Scholar
  55. Hillert L, Berglind N, Arnetz BB, Bellander T (2002) Prevalence of self-reported hypersensitivity to electric or magnetic fields in a population-based questionnaire survey. Scand J Work Environ Health 28:33–41.Google Scholar
  56. Hillert L, Flato S, Georgellis A, Anetz BB, Kolmodin-Hedman B (2001) Environmental illness: Fatigue and cholinesterase activity in patients reporting hypersensitivity to electricity. Environ Res A 85:200–206.CrossRefGoogle Scholar
  57. Hinrichs H, Heinze HJ (2004) Effects of GSM electromagnetic field on the MEG during an encoding-retrieval task. Neuroreport 15:1191–1194.CrossRefGoogle Scholar
  58. Hirsch SE, Appleton B, Fine BS, Brown PV (1977) Effects of repeated microwave irradiations to the albino rabbit eye. Invest Ophthalmol Vis Sci 16:315–319.Google Scholar
  59. Huber R, Treyer V, Borbely AA, Schuderer J, Gttselig JM, Landolt HP, Werth E, Berthold T, Kuster N, Buck A, Achermann P (2002) Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J Sleep Res 11:289–295.CrossRefGoogle Scholar
  60. Huber R, Schuderer J, Graf T, Jutz K, Borbely AA, Kuster N, Achermann P (2003) Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate. Bioelectromagnetics 24:262–276.CrossRefGoogle Scholar
  61. Huber R, Treyer V, Schuderer J, Berthold T, Buck A, Kuster N, Landolt HP, Achermann P (2005) Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur J Neurosci 21:1000–1006.CrossRefGoogle Scholar
  62. Hudspeth AJ (2000) Hearing. In: Kandel ER, Schwartz JH, Jessell TM (eds), Principles of Neural Science, 4th ed. New York: McGraw-Hill, 619–624.Google Scholar
  63. Ikeda N, Hayashida O, Kameda H, Ito H, Matsuda T (1994) Experimental study on thermal damage to dog normal brain. Int J Hyperthermia 10:553–561.Google Scholar
  64. Imaida K. Taki M, Yamaguchi T, Ito T, Watanabe S. Wake K, Shirai T (1998a) Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a medium-term liver bioassay. Carcinogenesis 19:311–314. Imaida K, Taki M, Watanabe S, Kamimura Y, Ito T, Yamaguchi T, Ito N, Shirai T (1998b) The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay. Jpn J Cancer Res 89:995–1002.Google Scholar
  65. Imaida K, Hagiwara A, Yoshino H, Tamano S, Sano M, Futakuchi M, Ogawa K, Asamoto M, Shirai T (2000) Inhibitory effects of low doses of melatonin on induction or preneoplastic liver lesions in a medium-term liver bioassay in F344 rats: relation to the influence of electromagnetic near field exposure. Cancer Lett 155:105–114.CrossRefGoogle Scholar
  66. Inaba R, Shishido K, Okada A, Moroji T (1992) Effects of whole body microwave exposure on the rat brain contents of biogenic amines. Eur J Appl Physiol Occup Physiol 65:124–128.CrossRefGoogle Scholar
  67. Ingalls CE (1967) Sensation of hearing in electromagnetic fields. NY State J Med 67:2992–2997.Google Scholar
  68. Jarupat S, Kawabata A, Tokura H, Borkiewicz A (2003) Effects of the 1900 MHz electromagnetic field emitted from cellular phone on nocturnal melatonin secretion. J Physiol Anthropol 22:61–63.CrossRefGoogle Scholar
  69. Jauchem JR, Ryan KL, Frei MR (1999) Cardiovascular and thermal responses in rats during 94 GHz irradiation. Bioelectromagnetics 20:264–267.CrossRefGoogle Scholar
  70. Jauchem JR, Ryan KL, Frei MR (2000) Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats. Bioelectromagnetics 21:159–166.CrossRefGoogle Scholar
  71. Johnson CC, Guy AW (1972) Non-ionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60:692–718.CrossRefGoogle Scholar
  72. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th ed. McGraw-Hill, New YorkGoogle Scholar
  73. Kizilay A, Ozturan O, Erdem T, Kelcioglu MT, Miman MC (2003) Effects of chronic exposure of electromagnetic fields from mobile phones on hearing in rats. Auris Nasus Larynx 30:239–245.CrossRefGoogle Scholar
  74. Koivisto M, Revonsuo A, Krause C, Haarala C, Sillanmaki L, Laine M, Hamalainen H (2000a) Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport 11:413–415.Google Scholar
  75. Koivisto M, Krause CM, Revonsuo A, Laine M, Hamalainen H (2000b): The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport 11:1641–1643.Google Scholar
  76. Koivisto M, Haarala C, Krause CM, Revonsuo A, Laine M, Hamalainen H (2001) GSM phone signal does not produce subjective symptoms. Bioelectromagnetics 22:212–215.CrossRefGoogle Scholar
  77. Kojima M, Hata I, Wake K, Watanabe S, Tamanaka Y, Kamimura Y, Taki M, Sasaki K (2004) Influence of anesthesia on ocular effects and temperature of rabbit eyes exposed to microwaves. Bioelectromagnetics 25:228–233.CrossRefGoogle Scholar
  78. Kolosova LI, Akoev GN, Ryabchikova OV, Avelev VD (1998) Effect of low-intensity millimeterrange electromagnetic irradiation on the recovery of function in lesioned sciatic nerves in rats. Neurosci Behav Physiol 28:26–30.CrossRefGoogle Scholar
  79. Krakauer J, Ghez C (2000) Voluntary movement. In Kandel E, Schwartz JH, Jessell TM (eds), ‘Principles of Neural Sciences’ 4th ed. New York: McGraw-Hill, 756–781.Google Scholar
  80. Kramar P, Harris C, Guy AW (1987) Thermal cataract formation in rabbits. Bioelectromagnetics 8:397–406.CrossRefGoogle Scholar
  81. Kramar P, Harris C, Emery AF, Guy AW (1978) Acute microwave irradiation and cataract formation in rabbits and monkeys. J Microw Power 13:239–249.Google Scholar
  82. Kramar PO, Harris C, Guy AW, Emery AF (1975) The ocular effects of microwaves on hypothermic rabbits: A study of microwave cataractogenic mechanisms. Ann NY Acad Sci 247:155–165.CrossRefGoogle Scholar
  83. Kramarenko AV, Tan U (2003) Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci 113:1007–1019.CrossRefGoogle Scholar
  84. Krause CM, Haarala C, Sillanmaki L, Koivisto M, Alanko K, Revonsuo A, Laine M, Hamalainen H (2004) Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory tasks: a double blind replication study. Bioelectromagnetics 25:33–40.CrossRefGoogle Scholar
  85. Krause CM, Sillanmaki L, Koivisto M, Haggqvist A, Saarela C, Revonsuo A, Laine M, Hamalainen H (2000a) Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. Neuroreport 20:761–764.CrossRefGoogle Scholar
  86. Krause CM, Sillanmaki L, Koivisto M, Haggqvist A, Saarela C, Revonsuo A, Laine M, Hamalainen H (2000b) Effects of electromagnetic fields emitted by cellular phones on the electroencephalogram during a visual working memory task. Int J Radiat Biol 76:1659–1667.CrossRefGoogle Scholar
  87. Kues HA, D’Anna SA, Osiander R, Green WR, Monahan JC (1999) Absence of ocular effects after either single or repeated exposure to 10 mW/cm2 from a 60 GHz CW source. Bioelectromagnetics 20:463–473.CrossRefGoogle Scholar
  88. Lai H (2004) Interaction of microwaves and a temporally incoherent magnetic field on spatial learning in the rat. Physiol Behav 82:785–789.CrossRefGoogle Scholar
  89. Lai H, Horita A, Guy AW (1994) Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 15:95–104.CrossRefGoogle Scholar
  90. Lai H, Carino MA, Horita A, Guy AW (1992a) Single vs. repeated microwave exposure: effects on benzodiazepine receptors in the brain of the rat. Bioelectromagnetics 13:57–66.CrossRefGoogle Scholar
  91. Lai H, Carino MA, Horita A Guy AW (1992b) Opioid receptor subtypes that mediate a microwave-induced decrease in central cholinergic activity in the rat. Bioelectromagnetics 13:237–246.CrossRefGoogle Scholar
  92. Lai H, Carino MA, Horita A, Guy AW(1996) Intraseptalmicroinjection of beta-funaltrexamine blocked a microwave-induced decrease of hippocampal cholinergic activity in the rat. Pharmacol Biochem Behav 53:613–616.CrossRefGoogle Scholar
  93. Lai H, Horita A, Chou CK, Guy AW (1983) Psychoactive-drug response is affected by acute low-level microwave irradiation. Bioelectromagnetics 4:205–214.Google Scholar
  94. Lai H, Horita A, Chou CK, Guy AW (1987) Low-level microwave irradiations affect central cholinergic activity in the rat. J Neurochem 48:40–45.CrossRefGoogle Scholar
  95. Lange DG, Sedmak J (1991) Japanese encephalitis virus (JEV): potentiation of lethality in mice by microwave radiation. Bioelectromagnetics 12:335–348.CrossRefGoogle Scholar
  96. La Regina M, Moros EG, Pickard WF, Straube WL, Baty J, Roti Roti JL (2003) The effect of chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiofrequency radiation on the incidence of spontaneous tumors in rats. Radiat Res 160:143–151.CrossRefGoogle Scholar
  97. Lee TM, Lam PK, Yee LT, Chan CC (2003) The effect of the duration of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport 14:1361–1364.CrossRefGoogle Scholar
  98. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R (2002) Non-thermal activation of the hsp27/p38MARK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer-and blood-brain barrier-related effects. Differentiation 70: 120–129CrossRefGoogle Scholar
  99. Levallois P, Neutra R, Lee G, Hristova L (2002) Study of self-reported hypersensitivity to electromagnetic fields in California. Environ Health Perspect 110:619–623.Google Scholar
  100. Linden V, Rolfsen S (1981) Video computer terminals and occupational dermatitis. Scand J Work Environ Health 7: 62–64.Google Scholar
  101. Lonne-Rahm S, Andersson B, Melin L, Schultzberg M, Arnetz B, Berg M(2000) Provocation with stress and electricity of patients with ‘Sensitivity to electricity’. J Occupation Environ Med 42:512–516.CrossRefGoogle Scholar
  102. Lotz WG, Michaelson SM(1978) Temperature and corticosterone relationships in microwaveexposed rats. J Appl Physiol 44:438–445.Google Scholar
  103. Lotz WG, Michaelson SM (1979) Effects of hypophysectomy and dexamethasone on rat adrenal response to microwaves. J Appl Physiol 47:1284–1288.Google Scholar
  104. Lu ST, Lebda NA, Pettit S, Michaelson SM (1985) The relationship of decreased serum thyrotropin and increased colonic temperature in rats exposed to microwaves. Radiat Res 104:365–386.CrossRefGoogle Scholar
  105. Lu ST, Mathur SP, Stuck B, Zaick H, D’Andrea JA, Ziriax JM, Merrit JH, Lutty G, McLeod DS, Johnson M (2000) Effects of high peak power microwaves on the retina of the rhesus monkey. Bioelectromagnetics 21:439–454.CrossRefGoogle Scholar
  106. Lyskov E, Sandstrom M, Mild KH (2001a) Neurophysiological study of patients with perceived ‘electrical hypersensitivity’. Int J Psychophysiol 42:233–241.CrossRefGoogle Scholar
  107. Lyskov E, Sandstrom M, Mild KH (2001b) Provocation study of persons with perceived electrical hypersensitivity and controls using magnetic field exposure and recording of electrophysiological characteristics. Bioelectromagnetics 22:457–462.CrossRefGoogle Scholar
  108. McAfee RD, Ortiz-Lugo R, Bishop R, Gordon R (1983) Absence of deleterious effects of chronic microwave radiation on the eyes of rhesus monkeys. Ophthalmology 90:1243–1245.Google Scholar
  109. McAfee RD, Longacre A Jr, Bishop RR, Elder ST, May JG, Holland MG, Gordon R (1979) Absence of ocular pathology after repeated exposure of unanesthetized monkeys to 9.3 GHz microwaves. J Microw Power 14:41–44.Google Scholar
  110. McQuade JS, Merritt JH, Rahimi O, et al. (2005) Effects of 915 MHz exposure on the integrity of the blood-brain barrier. Proc Bioelectromagnetics Soc 15-3.Google Scholar
  111. McRee DI, Wachtel H (1986) Elimination of microwave effects on the vitality of nerves after blockage of active transport. Radiat Res 108:260–268.CrossRefGoogle Scholar
  112. Maier R, Greter SE, Maier N (2004) Effects of pulsed electromagnetic fields on cognitive processes-a pilot study on pulsed field interference with cognitive regeneration. Acta Neurol Scand 110:46–52.CrossRefGoogle Scholar
  113. Mann K, Roschke J, Connemann B, Beta H (1998a) No effects of pulsed high-frequency electromagnetic fields on heart rate variability during human sleep. Neuropsychobiology 38:251–256.CrossRefGoogle Scholar
  114. Mann K, Wagner P, Brun G, Hassan F, Hiemke C, Roschke J (1998b) Effects of pulsed high-frequency electromagnetic fields on the neuroendocrine system. Neuroendocrinology 67:139–144.CrossRefGoogle Scholar
  115. Markowitz SB (1992) Poisoning of an urban family due to misapplication of household organophosphate and carbamate pesticides. Clin Toxicol 30:295–303.CrossRefGoogle Scholar
  116. Masuda H, Ushiyama A, Hirota S et al. (2005) Real-time measurement of brain microcirculation during RF-EMF exposure using an “8”-shaped loop antenna. Proc Bioelectromagnetics Soc 15-2.Google Scholar
  117. Mausset AL, de Seze R, Montpeyroux F, Privat A (2001) Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semi-quantitative immunochemistry. Brain Res 912:33–46.CrossRefGoogle Scholar
  118. Neilly JP, Lin JC (1986) Interaction of ethanol and microwaves on blood-brain barrier of rats. Bioelectromagnetics 7:405–414.CrossRefGoogle Scholar
  119. Ohmoto Y, Fujisawa H, Ishikawa T, Koizumi H, Matsuda T, Ito H (1996) Sequential changes in cerebral blood flow, early neuropathological consequences and blood-brain barrier disruption following radiofrequency-induced localized hyperthermia in the rat. Int J Hyperthermia 12:321–334.Google Scholar
  120. Ozturan O, Erdmem T, Mimam MC, Kalcioglu MT, Oncel S (2002) Effects of the electromagnetic field of mobile telephones on hearing. Acta Otolaryngol 122:289–293.CrossRefGoogle Scholar
  121. Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB (1997) Search for frequencyspecific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics 18:324–334.CrossRefGoogle Scholar
  122. Pakhomov AG, Doyle J, Stuck BE, Murphy MR (2003) Effects of high power microwave pulses on synaptic transmission and long term potentiation in hippocampus. Bioelectromagnetics 24:174–181.CrossRefGoogle Scholar
  123. Radon K, Parera D, Rose DM, Jung D, Vollrath L (2001) No effects of pulsed radio frequency electromagnetic fields on melatonin, cortisol, and selected markers of the immune system in man. Bioelectromagnetics 22:280–287.CrossRefGoogle Scholar
  124. Rogers WR, Merritt JH, Comeaux JA, Kuhnel CT, Moreland DF, Teltschik DG, Lucas JH, Murphy MR (2004) Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans Plas Sci 32:1587–1599.CrossRefGoogle Scholar
  125. Saito K, Saiga T, Suzuki K (1998) Reversible irritative effect of acute 2.45 GHz microwave exposure on rabbit eyes — a preliminary evaluation. J Toxicol Sci 23:197–203.Google Scholar
  126. Salford LG, Brun AE, Sturesson K, Eberhardt JL, Persson BR (1994) Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50 and 200Hz. Microscopic Res Technol 27:535–542.CrossRefGoogle Scholar
  127. Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881–883.CrossRefGoogle Scholar
  128. Sandstrom M, Lyskov E, Berglund A, Medevedev S, Mild KH (1997) Neurophysiological effects of flickering light in patients with perceived electrical hypersensitivity. J Ocupat Environ Med 39:15–22.CrossRefGoogle Scholar
  129. Santini R, Messagier R, Claustrat B, Fillion-Robin M, Youbicier-Simo BJ (2003) Video screen exposure and 6-sulfatoxymelatonin urinary excretion in women. Pathol Biol (Paris) 51:143–146.CrossRefGoogle Scholar
  130. Saunders RD, Kowalczuk CI, Sienkiewicz ZJ (1991) Biological Effects of Exposure to Nonionizing Electromagnetic Fields and Radiation: III. Radiofrequency and Microwave Radiation. Chilton, NRPB-R240, London HMSO.Google Scholar
  131. Seaman RL, Levovitz RM (1989) Thresholds of cat cochlear nucleus neurons to microwave pulses. Bioelectromagnetics 10:147–160.CrossRefGoogle Scholar
  132. Shellock FG, Crues JV (1988a) Corneal temperature changes induced by high-field-strength MR imaging with a head coil. Radiology 167:809–811.Google Scholar
  133. Shellock FG, Crues JV (1988b) Temperature changes caused by MR imaging of the brain with a head coil. AJNR Am J Neuroradiol 9:287–291.Google Scholar
  134. Shellock FG, Schatz CJ (1992) Increased corneal temperature caused by MR imaging of the eye with a dedicated local coil. Radiology 185:697–699.Google Scholar
  135. Shellock FG, Schaefer DJ, Kanal E (1994) Physiologic responses to anMRimaging procedure performed at a specific absorption rate of 6.0 W/kg. Radiology 192:865–868.Google Scholar
  136. Shirai T, Kuribayashi M, Wang, J, Fujiwara O et al. (2005) Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats. Proc Bioelectromagnetics Soc 15-4.Google Scholar
  137. Sienkiewicz ZJ, Blackwell RP, Haylock RG, Saunders RD, Cobb BL (2000) Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics 21:151–158.CrossRefGoogle Scholar
  138. Spiers DE, Adair ER, Baummer SC (1989) Acute thermoregulatory responses of the immature rat to warming by low-level 2,450 MHz microwave radiation. Biol Neonate 56:48–56.CrossRefGoogle Scholar
  139. Stark KD, Krebs T, Altpeter E, Manz B, Griot C, Abelin T (1997) Absence of chronic effect of exposure to short-wave radio broadcast signals on salivary melatonin concentrations in dairy cattle. J Pineal Res 22:171–176.Google Scholar
  140. Szmigielski S, Bortkiewicz A, Gadzicka E, Zmyslony M, Kubacki R (1998) Alteration of diurnal rhythms of blood pressure and heart rate to workers exposed to radiofrequency electromagnetic fields. Blood Press Monit 3:323–330.Google Scholar
  141. Tahvanainen K, Nino J, Halonen P, Kuusela T, Laitinen T, Lansimie E, Hartikainen J, Hietanen M, Lindholm H (2004) Cellular phone use does not actually affect blood pressure or heart rate of humans. Bioelectromagnetics 25:73–83.CrossRefGoogle Scholar
  142. Takashima S, Onaral B, Schwan HP (1979) Effects of modulated RF energy on the EEG of mammalian brains. Radiat Environ Biophys 16:15–27.CrossRefGoogle Scholar
  143. Tattersall JE, Scott IR, Wood SJ, Nettell JJ, Bevir MK, Wang Z, Somasiri NP, Chen X (2001) Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res 904:43–53.CrossRefGoogle Scholar
  144. Testylier G, Tonduli L, Malabiau R, Debouzy JC (2002) Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics 23:249–255.CrossRefGoogle Scholar
  145. Thuroczy G, Kubinyi G, Bodo M, Bakos J, Szabo LD (1994) Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats. Rev Environ Health 10:135–148.Google Scholar
  146. Tsurita G, Nagawa H, Ueno S, Watanabe S, Taki M (2000) Biological and morphological effects on the brain after exposure of rats to a 1439 MHz TDMA. Bioelectromagnetics 21:364–371.CrossRefGoogle Scholar
  147. Vollrath L, Spessert R, Kratzsch T, Keiner M, Hollmann H (1997) No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland. Bioelectromagnetics 18:376–387.CrossRefGoogle Scholar
  148. Vorobyov VV, Galchenko AA, Kukushkin NI, Akoev IG (1997) Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats. Bioelectromagnetics 18:293–298.CrossRefGoogle Scholar
  149. Wagner P, Roschke J, Mann K, Fell J, Hiller W, Frank C, Grozinger M (2000) Human sleep EEG under the influence of pulsed radio frequency electromagnetic fields. Results from polysomnographies using submaximal high power flux density. Neuropsychobiology 42:207–212.CrossRefGoogle Scholar
  150. Walters TJ, Ryan KL, Nelson DA, Blick DW, Mason PA (2004) Effects of blood flow on skin heating induced by millimeter wave irradiation in humans. Health Phys 86:115–120.CrossRefGoogle Scholar
  151. Wang B, Lai H (2000) Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics 21:52–56.CrossRefGoogle Scholar
  152. Yamaguchi H, Tsurita G, Ueno S, Watanabe S, Wake K, Taki M, Nagawa H (2003) 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromagnetics 24:223–230.CrossRefGoogle Scholar
  153. Yamaura I, Matsumoto G (1972) Dynamic characteristics of crayfish stretch receptor for microwave radiation (Japanese text).Med Electron Bioengin 10:231–238.Google Scholar
  154. Yamaura I, Matsumoto G (1973) Formulation and simulation of the neuron response to temperature stimulation (Japanese text). Med Electron Bioengin 11:395–403.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Masamichi Kato
    • 1
  1. 1.Hokkaido UniversitySapporoJapan

Personalised recommendations