Advertisement

Introduction

  • Masamichi Kato
  • Tsukasa Shigemitsu

Keywords

Circadian Rhythm Transmission Line Lightning Discharge Magnetotactic Bacterium Schumann Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.5 References

  1. Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML (1984) Pulsed magnetic field therapy for tibial non-union. Lancet, May 5: 994–996.Google Scholar
  2. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet, May: 1106–1107.Google Scholar
  3. Bassett CA, Mitchell SN, Faston SR (1981) Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am 63: 511–523.Google Scholar
  4. Blakemore RP (1975) Magnetotactic bacteria. Science 190: 377–379CrossRefGoogle Scholar
  5. Day BL, Brown P (2001) Evidence for subcortical involvement in the visual control of human reaching. Brain 124: 1832–1840.CrossRefGoogle Scholar
  6. Dowse HB, Palmer JD (1969) Entrainment of circadian activity rhythms in mice by electrostatic fields. Nature 222: 564–566CrossRefGoogle Scholar
  7. Engelmann W, Hellrung W, Johnsson A (1996) Circadian locomotor activity of Musca flies: recording method and effects of 10 Hz square-wave electric fields. Bioelectromagnetics 17: 100–110CrossRefGoogle Scholar
  8. Frey AH (1961) Auditory system response to radio frequency energy. Aerospace Med 32: 1140–1142Google Scholar
  9. Gasser HS (1921): A study of the action currents of nerve with the cathode ray oscillograph. Amer J Physiol 62: 496–524.Google Scholar
  10. Gauger JR (1985) Household appliance magnetic field survey. IEEE PAS 104: 2436–2444.Google Scholar
  11. IARC (International Agency for Research on Cancer) (2002) Non-ionizing Radiation, Part I: Static and Extremely Low-frequency (ELF) Electric and Magnetic Fields. IARC Monographs on the evaluation of carcinogenic risks to humans; 80. IARC Press Lyon FranceGoogle Scholar
  12. International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2003) Exposure to Static and Low Frequency Electromagnetic Fields, Biological Effects and Health Consequences (0–100 kHz). ICNIRP, Munich, Germany.Google Scholar
  13. Kalmijn AD (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A., Autrum A., Jung R., Loewenstein WR, McKay DM., and Teuber HL. Handbook of Sensory Physiology, Berlin: Springer-Verlag, Vol. III/3, 147–200.Google Scholar
  14. Kandel ER, Schwaltz JH, Jessell TM (2000) Principles of Neural Sciences 4th ed. McGraw-Hill, New YorkGoogle Scholar
  15. Knave B, Gamberale F (1979) Long-term exposure to electric fields; a cross-sectional epidemiological investigation of occupationally exposed workers in high voltage substation. Scand J Work Environ Hlth 5: 115–125.Google Scholar
  16. Koenig HL, Krueger AP, Lang S, Soening W (1981) Biologic Effects of Environmental Electromagnetism. Springer-Verlag New York, IncGoogle Scholar
  17. Koenig HL (1986) Unsichtbare Umwelt — der Mensch im Spielfeld Elektromagnetischer Kraefte-. Eigenverlag Herbert L. Koenig, Muenchen.Google Scholar
  18. Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluss der Erdmagnetfelds. Z Vergl Physiol 60: 219–243.CrossRefGoogle Scholar
  19. Lintzen T, Boese G, Mueller M, Eichmeier J, Ruhenstroth-Bauer G (1989) The stability of the circadian rhythms of green finches (Carduelis chloris) under the influence of a week electrical field. J Biol Rhythm 4: 371–376Google Scholar
  20. Matthes R, Bernhardt JH, Repacholi MH (2000) Effects of Electromagnetic Fields in the Living Environment. ICNIRP, Munich, Germany.Google Scholar
  21. Miller DA (1994) Electric and magnetic fields produced by commercial power system. In: “Biologic and Clinical effects of low frequency magnetic and electric fields. J.H. Llaurado et al. eds., Charles C. Thomas, Springfield, Illinois: 62–70.Google Scholar
  22. National Institute of Environmental Health Sciences (NIEHS) (1999) Assessment of health effects from exposure to power-line frequency electric and magnetic fields. Brooklyn Park, MNGoogle Scholar
  23. National Research Council (1997) Possible Health Effects of Exposure to Residential Electric and Magnetic fields. Washington, DC: National Academy PressGoogle Scholar
  24. Oehrl W, Koenig HL (1968) Messung und Deutung elektromagnetischer Oszillationen natuerlichen Ursprungs im Frequenzbereich unter 1 Hz. Z Angew Phys 25: 6–14.Google Scholar
  25. Pascual-Leone A, Catala MD, Pascual-Leone PA (1996) Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology, 46, 499–502.Google Scholar
  26. Phirke PS, Kubde AB, Umbarkar SP (1996) The influence of magnetic field on plant growth. Seed Sci & Technol 24: 375–392.Google Scholar
  27. Polk C (1974) Sources, propagation, amplitude and temporal variation of extremely low frequency (0–100 Hz) electromagnetic fields. In: “Biologic and Clinical effects of low frequency magnetic and electric fields”. J.H. Llaurado et al. (eds), Charles C. Thomas, Springfield, Illinois, 21–48.Google Scholar
  28. Roberge PF (1976) Study on the state of health of electric maintenance workers on Hydro-Quebec 735 kV power transmission system. Institut de Recherche de l’Hydro-Quebec (Final Report) Google Scholar
  29. Rommel SA, McCleave JD (1973) Prediction of oceanic electric fields in relation to fish migration. J Cons Int Explor Mer 35: 27–31.Google Scholar
  30. Schumann WO (1952) Ueber die strahlungslosern Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionensphaerenhuelle umgeben ist. Z Naturforsch 7(A): 149–154.MathSciNetGoogle Scholar
  31. Sheppard AR, Eisenbud M (1977) Biological effects of electric and magnetic fields of extremely low frequency. New York University Press.Google Scholar
  32. Singewald ML, Langworthy DR, Kouwenhoven WB (1973) Medical follow-up study of high-voltage linemen working in AC electric fields. IEEE PAS 92: 1307–1309.Google Scholar
  33. Ueno S, Matsuda T, Hiwaki O (1990) Localized stimulation of the human brain and spinal cord by a pair of opposing pulsed magnetic fields. J Appl Phys 67: 5838–5840.CrossRefGoogle Scholar
  34. Ueno S, Tashiro T, Harada K (1988) Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J Appl Phys 64: 5862–5864.CrossRefGoogle Scholar
  35. Uman MA (1984) The Lightning, Dover Publication, INC. New York.Google Scholar
  36. Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol, 109: 273–284.Google Scholar
  37. Wever R (1968) Einfluss schwacher elektromagnetischer Felder auf die circadiane Periodik des Menschen. Naturwissenschaften, 55: 29–32.CrossRefGoogle Scholar
  38. Wever R (1974) ELF-effects on human circadian rhythms. In: “ELF and VLF Electromagnetic Field Effects”. MA Persinger (ed), Plenum Press New York, 101–144.Google Scholar
  39. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer-Verlag Berlin HeidelbergGoogle Scholar
  40. Yasuda I (1954) Piezoelectric activity of bone. J Jap Orthoped Surg Soc, 28: 267–269.Google Scholar
  41. Yasui M (1994) Magnetic field under transmission line (Japanese text). Power Engineering R & D Center, Tokyo Electric Power C.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Masamichi Kato
    • 1
  • Tsukasa Shigemitsu
    • 2
  1. 1.Hokkaido UniversitySapporoJapan
  2. 2.Central Research Institute of Electric Power IndustryChibaJapan

Personalised recommendations