Bone Formation by BMP Gene Transfection

  • Koshi N. Kishimoto
  • Yuji Watanabe

An application of bone morphogenetic proteins (BMPs) has been expected to be a solution for fracture repair and bone regeneration ever since the discovery of their osteogenic potential (Urist, 1965; Reddi, 2000). Recombinant BMPs have been employed in in vitro and in vivo studies of bone induction. In vitro studies have revealed that BMPs cause the transformation of pluripotent mesenchymal cells obtained from bone marrow (Thies et al., 1992), fat (Dragoo et al., 2003), and muscle (Katagiri et al., 1994) into osteogenic cells. Clinical application of recom-binant BMPs requires a high-quality recombinant protein and drug delivery system (DDS), which enables slow and continuous release of protein.

Vectors for gene transfer can be categorized into two groups: viral and nonviral. In vivo transfer of BMP gene by adenoviral vector could induce ectopic bone in muscle (Musgrave et al., 1999; Gonda et al., 2000; Chen et al., 2002). However, adenoviral vector causes an immune response. Obvious ectopic bone formation was detected in immunodeficient animals, but less so in immunocompetent animals (Musgrave et al., 1999; Li et al., 2003). Transplantation of adenoviral infected cells is more promis ing, and bone formation could be achieved in immunocompetent animals (Chang et al., 2003; Wang et al., 2003). Systemic administration (Okubo et al., 2000) and local administration (Kaihara et al., 2004) of immunosuppressant can decrease the immune response of the host and enables adenoviral infection and effective bone formation. The use of retroviral vector also is possible to transfect BMP gene and induce bone formation. Adenoassociated viral transfer (AAV) (Gafni et al., 2004) and helper-dependent adenoviral transfer (Abe et al., 2002) are less pathogenic and can be candidates for gene therapy of immunocompetent animals.


Bone Formation Bone Morphogenetic Protein Adenoviral Vector Ectopic Bone Formation Dental Pulp Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, N., Lee, Y. P., Sato, M., Zhang, X., Wu, J., Mitani, K., Lieberman, J. R. (2002). Enhancement of bone repair with a helper-dependent adenoviral transfer of bone morphogenetic protein-2. Biochem Biophys Res Commun 297, 523–527.CrossRefGoogle Scholar
  2. Chang, S. C., Chuang, H. L., Chen, Y. R., Chen, J. K., Chung, H. Y., Lu, Y. L., Lin, H. Y., Tai, C. L., Lou, J. (2003). Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther 10, 2013–2019.CrossRefGoogle Scholar
  3. Chen, Y., Cheung, K. M., Kung, H. F., Leong, J. C., Lu, W. W., Luk, K. D. (2002). In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene. Biochem Biophys Res Commun 298, 121–127.CrossRefGoogle Scholar
  4. Dragoo, J. L., Choi, J. Y., Lieberman, J. R., Huang, J., Zuk, P. A., Zhang, J., Hedrick, M. H., Benhaim, P. (2003). Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 21, 622–629.CrossRefGoogle Scholar
  5. Gafni, Y., Pelled, G., Zilberman, Y., Turgeman, G., Apparailly, F., Yotvat, H., Galun, E., Gazit, Z., Jorgensen, C., Gazit, D. (2004). Gene therapy platform for bone regeneration using an exog-enously regulated, AAV-2-based gene expression system. Mol Ther 9, 587–595.CrossRefGoogle Scholar
  6. Gonda, K., Nakaoka, T., Yoshimura, K., Otawara-Hamamoto, Y., Harrii, K. (2000). Heterotopic ossification of degenerating rat skeletal muscle induced by adenovirus-mediated transfer of bone morphogenetic protein-2 gene. J Bone Miner Res 15, 1056–1065.CrossRefGoogle Scholar
  7. Ivandic, B. T., Qiao, J. H., Machleder, D., Liao, F., Drake, T. A., Lusis, A. J. (1996). A locus on chromosome 7 determines myocardial cell necrosis and calcification (dystrophic cardiac cal-cinosis) in mice. Proc Natl.Acad Sci USA 93, 5483–5488.CrossRefGoogle Scholar
  8. Kaihara, S., Bessho, K., Okubo, Y., Sonobe, J., Kawai, M., Iizuka, T. (2004). Simple and effective osteoinductive gene therapy by local injection of a bone morphogenetic protein-2-expressing recombinant adenoviral vector and FK506 mixture in rats. Gene Ther 11, 439–447.CrossRefGoogle Scholar
  9. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., Suda, T. (1994). Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127, 1755–1766.CrossRefGoogle Scholar
  10. Kawai, M., Bessho, K., Kaihara, S., Sonobe, J., Oda, K., Iizuka, T., Maruyama, H. (2003). Ectopic bone formation by human bone morphogenetic protein-2 gene transfer to skeletal muscle using transcutaneous electroporation. Hum Gene Ther 14, 1547–1556.CrossRefGoogle Scholar
  11. Kawai, M., Bessho, K., Maruyama, H., Miyazaki, J., Yamamoto, T. (2005). Human BMP-2 gene transfer using transcutaneous in vivo electroporation induced both intramembranous and endo chondral ossification. Anat Rec A Discov Mol Cell Evol Biol 287, 1264–1271.Google Scholar
  12. Kawai, M., Bessho, K., Maruyama, H., Miyazaki, J., Yamamoto, T. (2006). Simultaneous gene transfer of bone morphogenetic protein (BMP)-2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression. BMC Musculoskelet Disord 7, 62.CrossRefGoogle Scholar
  13. Kimelman, N., Pelled, G., Helm, G. A., Huard, J., Schwarz, E. M., Gazit, D. (2007). Review: Gene-and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13, 1135–1150.CrossRefGoogle Scholar
  14. Kishimoto, K. N., Watanabe, Y., Nakamura, H., Kokubun, S. (2002). Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene. Bone 31, 340–347.CrossRefGoogle Scholar
  15. Kotajima, S., Kishimoto, K. N., Watanuki, M., Hatori, M., Kokubun, S. (2006). Gene expression analysis of ectopic bone formation induced by electroporatic gene transfer of BMP4. Ups J Med Sci 111, 231–241.CrossRefGoogle Scholar
  16. Li, J. Z., Li, H., Sasaki, T., Holman, D., Beres, B., Dumont, R. J., Pittman, D. D., Hankins, G. R., Helm, G. A. (2003). Osteogenic potential of five different recombinant human bone morpho-genetic protein adenoviral vectors in the rat. Gene Ther 10, 1735–1743.CrossRefGoogle Scholar
  17. Musgrave, D. S., Bosch, P., Ghivizzani, S., Robbins, P. D., Evans, C. H., Huard, J. (1999). Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 24, 541–547.CrossRefGoogle Scholar
  18. Nakashima, M., Iohara, K., Ishikawa, M., Ito, M., Tomokiyo, A., Tanaka, T., Akamine, A. (2004). Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15, 1045–1053.Google Scholar
  19. Nakashima, M., Mizunuma, K., Murakami, T., Akamine, A. (2002). Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/ differentiation factor 11 (Gdf11). Gene Ther 9, 814–818.CrossRefGoogle Scholar
  20. Nakashima, M., Tachibana, K., Iohara, K., Ito, M., Ishikawa, M., Akamine, A. (2003). Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14, 591–597.CrossRefGoogle Scholar
  21. Okubo, Y., Bessho, K., Fujimura, K., Iizuka, T., Miyatake, S. I. (2000). Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression. Biochem Biophys Res Commun 267, 382–387.CrossRefGoogle Scholar
  22. Ono, I., Yamashita, T., Jin, H. Y., Ito, Y., Hamada, H., Akasaka, Y., Nakasu, M., Ogawa, T., Jimbow, K. (2004). Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy. Biomaterials 25, 4709–4718.CrossRefGoogle Scholar
  23. Reddi, A. H. (2000). Morphogenesis and tissue engineering of bone and cartilage: Inductive sig nals, stem cells, and biomimetic biomaterials. Tissue Eng 6, 351–359.CrossRefGoogle Scholar
  24. Sheyn, D., Kimelman-Bleich, N., Pelled, G., Zilberman, Y., Gazit, D., Gazit, Z. (2008). Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther 15, 257–266.CrossRefGoogle Scholar
  25. Thies, R. S., Bauduy, M., Ashton, B. A., Kurtzberg, L., Wozney, J. M., Rosen, V. (1992). Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130, 1318–1324.CrossRefGoogle Scholar
  26. Urist, M. R. (1965). Bone formation by autoinduction. Science 150, 893–899.CrossRefGoogle Scholar
  27. Van Den Hoff, M. J., Moorman, A. F., Lamers, W. H. (1992). Electroporation in “intracellular” buffer increases cell survival. Nucleic Acids Res 20, 2902.CrossRefGoogle Scholar
  28. Wang, J. C., Kanim, L. E., Yoo, S., Campbell, P. A., Berk, A. J., Lieberman, J. R. (2003). Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 85-A, 905–911.Google Scholar
  29. Wang, X. D., Tang, J. G., Xie, X. L., Yang, J. C., Li, S., Ji, J. G., Gu, J. (2005). A comprehensive study of optimal conditions for naked plasmid DNA transfer into skeletal muscle by electro-poration. J Gene Med 7, 1235–1245.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryTohoku University School of Medicine, Seiryo-machi,Aoba-kuSendaiJapan
  2. 2.Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and CancerTohoku UniversityAoba-kuJapan

Personalised recommendations