Skip to main content

Electroporation in the Regenerating Tail of the Xenopus Tadpole

  • Chapter
Electroporation and Sonoporation in Developmental Biology
  • 1065 Accesses

Xenopus laevis is a model system widely used to investigate embryogenesis, metamorphosis, and regeneration. The tail of the Xenopus tadpole is very useful in analyzing the molecular mechanisms underlying appendage regeneration (Slack et al., 2004; Mochii et al., 2007; Slack et al., 2008). It is transparent and suitable for whole-mount observation at the cellular level. The tail regenerates within 2 weeks of amputation. The conventional injection of blastomeres with mRNA, DNA, or antisense oligonucleotides is a powerful tool with which to study genetic mechanisms in early embryos, but it is not effective in late embryos or larvae. A transgenic approach has been used to analyze tail regeneration (Beck et al., 2003, 2006), but its success is largely dependent on the activity of the promoter used. There are limited numbers of promoters available that precisely regulate gene expression spatially and/or temporally. In vivo electroporation is an alternative method that can be used to manipulate gene expression in late embryos and larvae. The introduction of DNA or RNA into the cells of neurula and tailbud embryos has been reported (Eide et al., 2000; Sasagawa et al., 2002; Falk et al., 2007). Targeting larval tissues with in vivo electroporation also has been used to investigate neural networks, metamorphosis, and regeneration (Haas et al., 2001, 2002; Nakajima and Yaoita, 2003; Javaherian and Cline, 2005; Bestman et al., 2006; Boorse et al., 2006; Lin et al., 2007; Mochii et al., 2007). In this chapter, we report a procedure to introduce DNA into the tissues of the tadpole tail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DS, Keller R, Koehl MA (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110:115–130.

    CAS  Google Scholar 

  • Atkinson DL, Stevenson TJ, Park EJ, Riedy MD, Milash B, Odelberg SJ (2006) Cellular electro-poration induces dedifferentiation in intact newt limbs. Dev Biol 299:257–271.

    Article  CAS  Google Scholar 

  • Beck CW, Christen B, Slack JM (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 5:429–439.

    Article  CAS  Google Scholar 

  • Beck CW, Christen B, Barker D, Slack JM (2006) Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech Dev 123:674–688.

    Article  CAS  Google Scholar 

  • Bestman JE, Ewald RC, Chiu SL, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1:1267–1272.

    Article  Google Scholar 

  • Boorse GC, Kholdani CA, Seasholtz AF, Denver RJ (2006) Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail:Coordination of ligand, receptor, and binding protein in tail muscle cell survival. Endocrinology 147:1498–1507.

    Article  CAS  Google Scholar 

  • Echeverri K, Tanaka EM (2002) Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298:1993–1996.

    Article  CAS  Google Scholar 

  • Eide FF, Eisenberg SR, Sanders TA (2000) Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis. FEBS Lett 486:29–32.

    Article  CAS  Google Scholar 

  • Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE (2007) Electroporation of cDNA/morpholinos to targeted areas of embryonic CNS in Xenopus. BMC Dev Biol. doi:10.1186/1471-213X-7-107.

    Google Scholar 

  • Gargioli C, Slack JM (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679.

    Article  CAS  Google Scholar 

  • González-Estévez C, Momose T, Gehring WJ, Saló E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci USA 100:14046–14051.

    Article  Google Scholar 

  • Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29:583–591.

    Article  CAS  Google Scholar 

  • Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo — from single cells to the entire brain. Differentiation 70:148–154.

    Article  CAS  Google Scholar 

  • Inouye S, Ogawa H, Yasuda K, Umesono K, Tsuji FI (1997) A bacterial cloning vector using a mutated Aequorea green fluorescent protein as an indicator. Gene 189:159–162.

    Article  CAS  Google Scholar 

  • Javaherian A, Cline HT (2005) Coordinated motor neuron axon growth and neuromuscular syn-aptogenesis are promoted by CPG15 in vivo. Neuron 45:505–512.

    Article  CAS  Google Scholar 

  • Lin G, Chen Y, Slack JM (2007) Regeneration of neural crest derivatives in the Xenopus tadpole tail. BMC Dev Biol doi:10.1186/1471-213X-7-56.

    Google Scholar 

  • Mochii M, Taniguchi Y, Shikata I. (2007) Tail regeneration in the Xenopus tadpole. Dev Growth Differ 49:155–161.

    Google Scholar 

  • Nakajima K, Yaoita Y (2003) Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev Dyn 227:246–255.

    Article  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal Table of Xenopus Laevis (Daudin):A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. Garland, New York.

    Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning:A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K (2002) Improved mRNA electroporation method for Xenopus neurula embryos. Genesis 33:81–85.

    Article  CAS  Google Scholar 

  • Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y. (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624.

    Article  CAS  Google Scholar 

  • Schnapp E, Tanaka EM (2005) Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum. Dev Dyn 232:162–170. Erratum in:Dev Dyn 233:1175.

    Article  CAS  Google Scholar 

  • Slack JM, Beck CW, Gargioli C, Christen B (2004) Cellular and molecular mechanisms of regeneration in Xenopus. Philos Trans R Soc Lond B Biol Sci 359:745–751.

    Article  CAS  Google Scholar 

  • Slack JM, Lin G, Chen Y (2008) Molecular and cellular basis of regeneration and tissue repair:The Xenopus tadpole:A new model for regeneration research. Cell Mol Life Sci 65:54–63.

    Article  CAS  Google Scholar 

  • Thummel R, Bai S, Sarras MP Jr, Song P, McDermott J, Brewer J, Perry M, Zhang X, Hyde DR, Godwin AR (2006) Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn 235:336–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Mochii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Mochii, M., Taniguchi, Y. (2009). Electroporation in the Regenerating Tail of the Xenopus Tadpole. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_21

Download citation

Publish with us

Policies and ethics