Skip to main content

Transfer of Foreign DNA into Aquatic Animals by Electroporation

  • Chapter
Electroporation and Sonoporation in Developmental Biology

Aquatic animals into which a foreign gene or a non-coding DNA fragment is artificially introduced and integrated in their genomes are called transgenic aquatic animals. Since 1985, a wide range of transgenic aquatic animal species have been produced mainly by microinjecting or electroporating homologous or heterologous transgenes into newly fertilized or unfertilized eggs and sometimes, sperm (for review, Chen and Powers, 1990; Hackett, 1993; Chiou et al., 2005). To produce a desired transgenic aquatic animal species, several factors should be considered. First, could the reproduction cycle of the aquatic animal species under consideration be completed in captivity? Second, a specific gene construct must be designed based on the special requirements of each study. For example, the gene construct may contain an open reading frame encoding a gene product of interest and regulatory elements that regulate the expression of the gene in a temporal, spatial and/or devel opmental manner. Third, an efficient method for delivering the transgene construct needs to be identified. Fourth, since not all instances of gene transfer are efficient, a screening method must be adopted for identifying transgenic individuals.

Since the development of the first transgenic fish in the mid 1980s, techniques of producing transgenic aquatic animals have improved tremendously. Among differ ent methods for delivering gene constructs into aquatic animals, the electroporation method is considered to be the simplest but efficient method of gene delivery. In recent years, transgenic aquatic animals have been produced as valuable models for different disciplines of biological research as well as human disease modeling. In addition, transgenic technology has been used to produce aquatic animal species with beneficial traits, such as enhanced somatic growth and disease resistance, for aquaculture application. In this chapter, we will review the progress of producing transgenic aquatic animals by the electroporation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buono, R.J., Linser, P.J. (1992) Transient expression of RSVCAT in transgenic zebrafish made by electroporation. Mol Mar Biol Biotechnol 1, 271–275.

    CAS  Google Scholar 

  • Cerda, T.A., Thomas, J.E., Allende, M.L., Karlstrom, R.D., Palma V. (2006) Electroporation of DNA, RNA and morpholinos into zebrafish embryos. Methods 39, 209–211.

    Article  Google Scholar 

  • Chen, T.T., Powers, D.A. (1990) Transgenic fish. Trends Biotechnol 8, 209–215.

    Article  CAS  Google Scholar 

  • Chiou, Pinwen, P., Khoo, J., Chun, C.Z., Chen, T.T. (2005) Transgenic fish. In “Encyclopedia of Molecular Cell Biology and Molecular Medicine” (Meyer, R.A. ed) Vol. 14, 2nd edition, pp. 473–503. Wiley-VCH, KgA, Weinheim.

    Google Scholar 

  • Chun, C.Z., Chen, T.T. (2004) Disruption of embryonic development by the Ea4-peptide of rain bow trout in medaka (Oryzia latipes). Zebrafish 1, 227–238.

    Article  CAS  Google Scholar 

  • Chun, C.Z., Tsai, H.J., Chen, T.T. (2006) Disruption of embryonic heart and red blood cell develop ment by rainbow trout Pro-IGFI Ea4-peptide in Zebrafish (Danio rerio) embryos. Mol Repro Develop 73, 1112–1121.

    Article  CAS  Google Scholar 

  • Hackett, P.B. (1993) The molecular biology of transgenic fish. In “Biochemistry and Molecular Biology of Fish” (Hochachka, P. and Mommsen, T. eds) Vol. 2, pp. 207–240. Elesevier Science, Amsterdam.

    Google Scholar 

  • Hendricks, M., Jesuthan, S. (2007) Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development. Neural Dev 2, 6 (http://www.neural-development.com/2/1/6).

    Article  Google Scholar 

  • Huang, K.-S., Lin, Y.-C., Su, K.-C., Chen, H.-Y. (2007) An electroporation microchip system for transfection of zebrafish embryos using quantum dots and GFP genes for evaluation. Biomed Microdevice 9, 761–768.

    Article  Google Scholar 

  • Lu, J.K., Christman, C.L., Andrisani, O.M., Dixon, J.E., Chen, T.T. (1992) Integration, expression and germ-line transmission of foreign growth hormone genes in medaka (Oryzias latipes). Mol Marine Biol Biotechnol 1, 380–389.

    Google Scholar 

  • Lu, J.K., Chen, T.T., Allen, S.K., Matsubara, T., Burns, J.C. (1996) Production of transgenic dwarf surf clams, Mulinia lateralis, with pantropic retroviral vectors. Proc Natl Acad Sci USA 93, 3482–3486.

    Article  CAS  Google Scholar 

  • Lu, J.K., Fu, B.H., Wu, J.L., Chen, T.T. (2002) Production of transgenic silver sea bream (Sparus Sarba) by different gene transfer methods. Mar Biotechnol 4, 328–337.

    Article  CAS  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1, 841–845.

    CAS  Google Scholar 

  • Potter, H., Weir, L., Leder, P. (1984) Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81, 7161–7165.

    Article  CAS  Google Scholar 

  • Powers, D.A., Herford, L., Cole, T., Creech, K., Chen, T.T., Lin, C.M., Kight, K., Dunham, R.A. (1992) Electroporation: a method for transferring genes into gamates of zebrafish (Brachydanio reio), channel catfish (Ictalurus punctatus) and common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 1, 301–308.

    CAS  Google Scholar 

  • Rambabu, K.M., Rao, S.H.N., Rao, N.M. (2005) Efficient expression of transgene in adult zebrafish by electroporation. BMC Biotechnol 5, 29 (http://www.biomedcentral.com/1474-6750-5-29).

    Article  Google Scholar 

  • Sarmasik, A., Warr, G., Chen, T.T. (2002) Production of transgenic fish with elevated levels of innate defense activity to bacterial pathogens. Marine Biotechnol 4, 310–322.

    Article  CAS  Google Scholar 

  • Shigekawa, K., Dower, W.J. (1988) Electroporation of eukaryotes and prokaryotes: a general approach to introduction of macromolecules into cells. Biotechniwues 6, 742–751.

    CAS  Google Scholar 

  • Sin, F.Y., Walker, S.P., Symonds, J.E., Mukherjee, U.K., Khoo, J.G., Sin, I.L. (2000) Electroporation of salmon sperm for gene transfer: efficiency, reliability and fate of transgene. Mol Reprod Dev 56 (Suppl. 2), 285–288.

    Article  CAS  Google Scholar 

  • Symonds, J.E., Walker, S.P., Sin, F.Y.T. (1994) Development of mass gene transfer method in chinool salmon: optimization of gene transfer by electroporated sperm. Mol Mar Biol Biotech 3, 104–111.

    CAS  Google Scholar 

  • Thummel, R., Bai, S., Sarras, Jr., M.P., Song, P., McDermptt, J., Brewer, J., Perry, M., Zhang, X., Hyde, D.R., Godwin, A.R. (2006) Inhibition of zebrafish fin regeneration using in vivo elec troporation of morpholinos against fgfri1 and msxb. Dev Dyn 235, 336–346.

    Article  CAS  Google Scholar 

  • Tieleman, D.P. (2004) The molecular basis of electroporation. BMC Biochem 5, 10 (http://www. biomedcentral.com/471-2091-5-10).

    Article  Google Scholar 

  • Tseng, F.S., Lio, I.C., Tsai, H.J. (1994) Introducing the exogenous growth hormone cDNA into loach (Misgurnus anguillicaudatus) eggs via electroporated sperm as carrier. In “3rd International Marine Biotechnology Conference, Tromso, Norway” abstract pp. 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Chen, T.T., Chen, M.J., Chiou, TT., Lu, J.K. (2009). Transfer of Foreign DNA into Aquatic Animals by Electroporation. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_20

Download citation

Publish with us

Policies and ethics