Advertisement

Zusammenfassung

ARIMA Prozesse stellen spezielle Beschreibungen stochastischer Abhängigkeiten zwischen den Beobachtungen einer Zeitreihe dar. Diese werden mit Hilfe unbekannter Parameter (AR- und MA Koeffizienten) ausgedrückt. Unter Normalverteilungsannahmen können die Parameter unter Verwendung des Maximum-Likelihood Ansatzes geschätzt werden, so dass die darauf basierende Anpassung für Prognosezwecke Anwendung finden kann. Wie bei anderen parametrischen statistischen Modellen existieren auch hier Methoden, welche die Modellbildung und Modelldiagnose unterstützen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Jürgen Groß

There are no affiliations available

Personalised recommendations