Skip to main content

Aufarbeitung (Downstream Processing)

  • Chapter
Bioprozesstechnik

Zusammenfassung

Biokatalysatoren — gleichgültig, ob in Form von Enzymen, Prokaryoten oder Eukaryoten — haben sich als wesentlich spezifischer und damit wirkungsvoller als irgendein anorganischer Katalysator erwiesen. Wegen ihres begrenzten Temperatureinsatzbereiches — für die meisten von ihnen wirken Temperaturen über 50 °C bereits deaktivierend — und weil sie in der Regel nur in verdünnten wässrigen Systemen agieren, büßen sie aber einen großen Teil dieses Vorteils wieder ein. Hohe Kosten (für Enzyme) bzw. geringe Wachstumsgeschwindigkeiten (bei Prokaryoten und insbesondere Eukaryoten) tun ein Übriges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aruna, N., Lali, A. (2001): Purification of a plant peroxidase using reversibly soluble ion-exchange polymer. Process Biochem. 37: 431–437

    Article  CAS  Google Scholar 

  • Asenjo, J. A., Andrews, B. A. (2004): Is there a rational method to purify proteins? From expert systems to proteomics. J. Mol. Recognit. 17: 236–247

    Article  PubMed  CAS  Google Scholar 

  • Baker, R. W., Wijmans, J. G., Athayde, A. L. (1997): The effect of concentration polarisation of volatile organic compounds from water by pervaporation. J. Memb. Sci. 137: 159–172

    Article  CAS  Google Scholar 

  • Baker, R. W. (2004): Membrane Technology and Applications. John Wiley & Sons, Ltd., Chichester

    Book  Google Scholar 

  • Baldwin, C. V., Robinson, C. W. (1994): Enhanced disruption of Candida utilis using enzymatic pretreatment and high pressure homogenization. Biotechnol. Bioeng. 43: 46–56

    Article  PubMed  CAS  Google Scholar 

  • Bauer, B., Gerner, F. J., Strathmann, H. (1988): Development of Bipolar Membranes. Desalination 68: 279

    Article  CAS  Google Scholar 

  • Bauer, B., Chmiel, H., Menzel, T., Strathmann, H. (1991): Separation of Bioreactor Constituents by Electrodialysis with Bipolar Membranes. Proc. II. Congr. f. Biochem. Eng. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Bauer, K., Schembecker G. (2008): Synthesis of downstream processes. Chemie Ingenieur Technik 80(1–2): 185–190

    Article  CAS  Google Scholar 

  • Bell, D. J., Hoare, M., Dunnill P. (1983): Advances in Biochemical Engineering. Springer-Verlag Vol. 26, 1–72

    Article  CAS  Google Scholar 

  • Bensch, M., Selbach, B., Hubbuch, J. (2007): High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous twophase systems. Chem. Eng. Sci. 62(7): 2011–2021

    Article  CAS  Google Scholar 

  • Bensch, M., Wierling, P. S., von Lieres E., Hubbuch, J. (2005): High throughput screening of chromatographic phases for rapid process development. Chem. Eng. Technol. 28(11): 1274–1284

    Article  CAS  Google Scholar 

  • Blöcher, C. (2004): Einsatz getauchter keramischer Mehrkanal-Flachmembranen in Bioreaktoren. upt-Schriftenreihe, Band 1

    Google Scholar 

  • Blume, I., Schwerin, P., Mulder, M., Smolders, C. (1991): Vapour sorption and permeation properties of poly (dimethylsiloxane) films. J. Memb. Sci.: 61–85

    Google Scholar 

  • Böddeker, K. W. (1994): Recovery of volatile bioproducts by pervaporation. Proceed. of the NATO Advanced Study Institute, Kluwer Academic Publisher, Chapter 1.10

    Google Scholar 

  • Börgardts, P. (1996): Prozessentwicklung zur kombinierten Produktgewinnung und Abwasserreinigung am Beispiel der Milchsäreproduktion aus Molke. Fraunhofer IRBVerlag

    Google Scholar 

  • Börgardts, P., Krischke, W., Trösch, W., Brunner, H. (1998): Integrated bioprocess for the simultaneous production of lactic acid and dairy sewage treatment. Bioprocess Engineering 19: 321–329, Springer-Verlag

    Article  Google Scholar 

  • Bora, M. M., Borthakur, S., Rao, P. C., Dutta, N. N. (2005): Aqueous two-phase partitioning of cephalosporin antibiotics: effect of solute chemical nature. Separation and Purification Technology 45(2): 153–156

    Article  CAS  Google Scholar 

  • Bräutigam, S., Dennewald, D., Schürmann, M., Lutje-Spelberg, J., Pitner, W.-R., Weuster-Botz, D. (2009): Whole-cell biocatalysis: Evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microb. Technol. 45: 310–316

    Article  CAS  Google Scholar 

  • Britsch, L., Schroeder, T., Friedle, J. (2008): Small Scale Parallelized Biochromatography, GEN, August: 56–57

    Google Scholar 

  • Britsch, L., Schroeder, T., Friedle, J. (2008): Automated, High-Throughput Chromatographic Separation of Biological Compounds. Am. Biotechnol. Lab. 26(6): 20–23

    CAS  Google Scholar 

  • Brookmann, J. S. G. (1974): Mechanism of cell disintegration in a high pressure homogenizer. Biotechnol. Bioeng. 16: 371–383

    Article  Google Scholar 

  • Brooks, C. A., Cramer, S. M. (1992): Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AIChE Journal 38(12): 1969–1978

    Article  CAS  Google Scholar 

  • Brou, A., Jaffrin, M. Y., Ding, L. H., Courtois, J. (2003): Microfiltration and ultrafiltration of polysacchrides produced by fermentation using a rotating disc dynamic filtration system. Biotechnol. Bioeng. 82: 429–437

    Article  PubMed  CAS  Google Scholar 

  • Brunner, K.-H (1979): Theoretische und experimentelle Untersuchung der Feststoffabscheidung in Tellerseparatoren. Dissertation Erlangen

    Google Scholar 

  • Brunner, K.-H. (1988): Sterildesign und-betrieb von Zentrifugalseparatoren. DECHEMA-Monographien Band 113, VCH

    Google Scholar 

  • Chartogne, A., Reeuwijk, B., Hofte, B., Heijden, R., Tjaden, U. R., Greef, J. (2002): Capillary electrophoretic separations of proteins using carrier ampholytes. J. Chromatogr. A 959: 289–298

    Google Scholar 

  • Chae, Y. K., Jeon, W., Cho, K. S. (2002) Rapid and simple method to prepare functional pfu DNA polymerase expressed in Escherichia coli periplasm. J. Microbiol. Biotech. 12: 841–843

    Google Scholar 

  • Chmiel, H. (1971): Wärmeübergang in der turbulenten Rohrströmung viskoelastischer Flüssigkeiten. Dissertation, Aachen

    Google Scholar 

  • Chmiel, H., Strathmann, H., Streicher, E., Schneider, H. (1983): Membranen in der medizinischen Verfahrenstechnik. Chem. Ing. Techn. 55: 282–292

    Article  CAS  Google Scholar 

  • Chmiel, H., Gudernatsch, W., Howaldt, M. (1988): Integrated Downstream Processing with Membranes. Chem. Biochem. Eng. Q 2(4): 184–191

    CAS  Google Scholar 

  • Chmiel, H., Lefebvre, X., Mavrov, V., Noronha, M., Palmeri, J. (2006): Computer Simulation of Nanofiltration Mem branes and Processes. In: Rieth, M., Schommers, W. (Hrsg.) Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, Los Angeles

    Google Scholar 

  • Coffman, J. L., Kramarczyk, J. F., Kelley, B. D. (2008): Highthroughput screening of chromatographic separations: I. Method development and column modeling. Biotechnolog. Bioeng. 100(4): 605–618

    Article  CAS  Google Scholar 

  • Cohn, E. J. (1932): Naturwissensch. 20: 663

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1989): Guide to good manufacturing of medicinal products

    Google Scholar 

  • Cornelissen, G., Bertelsen, H.-P., Hahn, B., Schultz, M., Scheffler, U., Werner, E., Leptien, H., Krüß, S., Jansen, A.-K., Gliem, T., Hielscher, M., Wilhelm, B.-U., Sowa, E., Radeke, H. H., Luttmann, R. (2003): Herstellung rekombinanter Proteine mit Pichia pastoris in integrierter Prozessführung. Chem. Ing. Techn. 75: 281–290

    Article  CAS  Google Scholar 

  • Cunha, T., Aires-Barros, R. (2002): Large scale extraction of proteins. Mol. Biotechnol. 20: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Curie, J. A., Dunnill, P., Lilly, M. D. (1972): Release of protein from baker’s yeast by disruption in an industrial agitator mill. Biotechnol. Bioeng. 14: 725–736

    Article  Google Scholar 

  • Cziner, K., Virkki-Hatakka, T., Hurme, M., Turunen, I. (2005): Evaluative approach for process development. Chem. Eng. Technol. 28(12): 1490–1499

    Article  CAS  Google Scholar 

  • Dhariwal, A. (2007): The significance of submerged ceramic membrane systems for production oriented bioprocesses. Dissertation, Universität Saarbrücken

    Google Scholar 

  • Engler, C. R., Robinson, C. W. (1981): Effects of organism type and growth conditions on cell disruption. Biotechnol. Letters 3, 83

    Article  Google Scholar 

  • Fonseca, L. P., Cabral, J. M. S. (2002): Penicillin acylase release from Escherichia coli cells by mechanical cell disruption and permeabilization. J. Chem. Technol. Biotechnol. 77: 159–167

    Article  CAS  Google Scholar 

  • Fraud, N., Kuczewski, M., Zarbis-Papastoitis, G., Hirai, M. (2009): Hydrophobic membrane adsorber for large-scale downstream processing. BioPharm. Intern. 10: 24–27

    Google Scholar 

  • Frerix, A., Muller, M., Kula, M.R. Hubbuch, J.(2005): Scalable recovery of plasmid DNA based on aqueous two-phase separation. Biotechnology and Applied Biochemistry 42, 57–66

    Article  PubMed  CAS  Google Scholar 

  • Friedle, J. (2008): Chromatography media scouting. Euro. Biotech. News 5–6(7): 41–42

    Google Scholar 

  • General Electric (1982): Perm selective membranes. http://mempro.com/m213td.html

    Google Scholar 

  • Ghirisan, A., Hofmann, R., Posten, C. (2005): Press-und Presselektrofiltration einer Hefesuspension. Filtrieren und Separieren 19(3): 118–122

    Google Scholar 

  • Giovannoni, L., Ventani, M., Gottschalk, U. (2009): Antibody purification using membrane adsorbers. BioPharm. Intern. 10: 28–32

    Google Scholar 

  • Gözke, G., Posten, C. (2010): Electrofiltration of Biopolymers. Food Eng. Rev. 2(2): 131–146

    Article  CAS  Google Scholar 

  • Greve, A., Kula, M. R. (1991): Recycling of salts in partition protein extraction process. J. Chem. Techn. Biotechnol. 50: 27–42

    Article  CAS  Google Scholar 

  • Gruber, T., Chmiel, H., Käppeli, O., Sticher, P., Fiechter, A. (1993): Integrated process for continuous rhamnolipid biosynthesis. In: Kosaric, N. (Hrsg.), Biosurfactants, Marcel Dekker, New York: 157–173

    Google Scholar 

  • Gudernatsch, W., Kimmerle, K., Strathmann, H., Chmiel, H. (1987): Continous Removal of Ethanol from Fermentation Broths by Pervaporation. In: Chmiel, H., Hammes, W. P., Bailey, J. E. (Hrsg.): Biochemical Engineering. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Hannig, K., Wirth, H., Meyer, B., Zeiller, K. (1975): Free-Flow Electrophoresis I. Theoretical and Experimental Investigations. Hoppe Seyler’s Z. Physiol. Chem. 356: 1209

    Article  PubMed  CAS  Google Scholar 

  • Harjo, B., Wibowo, C., Ng, K. M. (2004): Development of natural product manufacturing processes: Phytochemicals. Chemical Engineering Research & Design 82(A8): 1010–1028

    CAS  Google Scholar 

  • Harrison, R. G., Todd, P., Rudge, S. R., Petrides, D. P. (2003): Bioseparation Science and Engineering. Oxford University Press, New York, Oxford

    Google Scholar 

  • Hetherington, P. J., Follows, M., Dunnill, P., Lilly, M. D. (1971): Release of protein from baker’s yeast by disruption in an industrial homogenizer. Trans. Inst. Chem. Eng. 49: 142–148

    CAS  Google Scholar 

  • Hilbrig, F., Freitag, R. (2003): Protein purification by affinity precipitation. J. Chromatogr. 790: 79–90

    CAS  Google Scholar 

  • Hofmann, R., Posten, C. (2003): Improvement of dead-end filtration of biopolymers with pressure electrofiltration. Chem. Eng. Sci. 58(17): 38473858

    Google Scholar 

  • Hoffstetter-Kuhn, S. (1989): Untersuchungen zum Scale-up der Free-Flow-Elektrophorese am Beispiel der Anreicherung von Alkoholdehydrogenase aus Saccharomyces cerevisiae. Dissertation, Saarbrücken

    Google Scholar 

  • Howaldt, M. (1988): Reaktionstechnische Untersuchungen gekoppelter coenzymabhängiger Enzymsysteme in Membranreaktoren. Dissertation, TU Stuttgart

    Google Scholar 

  • Hunter, R.J., (1981): Zeta Potential in Colloid Science, Academie Press, Sydney, 3. Auflage. 1981

    Google Scholar 

  • Hustedt, H. (1986): Extractive enzyme recovery with simple recycling of phase forming chemicals. Biotechnol. Lett. 8: 791–796

    Article  CAS  Google Scholar 

  • Hustedt, H., Kroner, K. H., Kula, M.-R. (1985): Applications of Phase Partitioning in Biotechnology. In: Walter, H., Brooks, D. E., Fisher, D. (Hrsg.) Partitioning in Aqueous Two-Phase-Systems. Academic Press, Inc. Orlando, 529–587

    Google Scholar 

  • Hustedt, H., Kroner, K. H., Papamichael, N., Menge, U. (1987): Verteilung zwischen wäßrrigen Phasen unter Mikrogravität. Bio-Engineering 1: 12–29

    Google Scholar 

  • Imamoglu, S. (2002): Simulated moving bed chromatography (SMB) for applications in bioseparation. Adv. Biochem. Eng./Biotechn. 76: 211–231

    CAS  Google Scholar 

  • Issaq, H. J., Conrads, T. P., Janini, G. M., Veenstra, T. D. (2002): Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 23: 3048–3061

    Article  PubMed  CAS  Google Scholar 

  • Johansson, G., Kopperschläger, G., Albertsson, P. A. (1983): Affinity partitioning of phosphofructokinase from baker’s yeast using polymer-bound cibacron blue F3 G-A. Eur. J. Biochem. 131: 589–594

    Article  PubMed  CAS  Google Scholar 

  • Kaen, H. (1999): Elektrokinetische Phänomene. Verlag der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-naturwissenschaftliche Klasse, Band 127, Heft 5

    Google Scholar 

  • Kalyanpur, M. (2002): Downstream processing in the biotechnology industry. Mol. Biotechnol. 22: 87–98

    Article  PubMed  CAS  Google Scholar 

  • Kelley, B. D., Switzer, M., Bastek, P., Kramarczyk, J. F., Molnar, K., Yu, T, Coffman J. L. (2008): High-throughput screening of chromatographic separations: IV. Ion-exchange. Biotechnol. Bioeng. 100(5): 950–963

    Article  PubMed  CAS  Google Scholar 

  • Kepka, C., Collet, E. Roos, F., Tjerneld, F. Veide, A. (2005): Two-step recovery process for tryptophan tagged cutinase: interfacing aqueous two-phase extraction and hydrophobic interaction chromatography. J. Chromatogr. A 1075: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Koberstein, E., Lehmann, E. (1986): Europ. Patent 0232386 A1

    Google Scholar 

  • Krämer, P., Bomberg, A. (1990): Neuere Anwendung von Staustrahlströmungen in der Aufarbeitung von Bioprodukten. Chem. Ing. Tech. 62(2): 126–127

    Article  Google Scholar 

  • Kramarczyk, J. F., Kelley, B. D., Coffman, J. L. (2008). Highthroughput screening of chromatographic separations: II. Hydrophobic interaction. Biotechnol. Bioeng. 100(4): 707–720

    Article  PubMed  CAS  Google Scholar 

  • Kula, M. R. (1990): Trends and future of aqueous two-phase extraction. Bioseparation 1: 181–189

    PubMed  CAS  Google Scholar 

  • Kula, M. R., Kroner, K. H., Hustedt, H. (1982): Purification of Enzymes by Liquid-Liquid Extraction. In: Fiechter, A. (Hrsg.) Advances in Biochemical Engineering/Biotechnology, Vol. 24. Springer-Verlag, Berlin, Heidelberg, New York, 73–118

    Google Scholar 

  • Kula, M. R., Schütte, H., Vogels, C., Frank, A. (1990): Cell disintegration for the purification of intracellular proteins. Food Biotechnol. 4: 169–183

    Article  CAS  Google Scholar 

  • Kula, M. R., Selber, K. (1999): Protein purification, aqueous liquid extraction. In: Flickinger, M. C., Drew, S. W. (Hrsg.) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Wiley, New York, 2179–2191

    Google Scholar 

  • Lee, C. T., Movreale, G., Middelberg, A. P. J. (2004): Combined infermenter extraction and cross-flow microfiltration for improved inclusion body processing. Biotechn. Bioeng. 85: 103–113

    Article  CAS  Google Scholar 

  • Lemmlich, R. (1972): Adsorptive bubble separation technique. Academic Press, New York, London

    Google Scholar 

  • Limon-Lason, J., Haare, J., Orsborn, C. B., Doyle, D. J., Dunnill, P. (1983): Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb. Technol. 5: 143–148

    Article  Google Scholar 

  • Lin, D.-Q., Brixius, P. J., Hubbuch, J. J., Thömmes, J., Kula, M. R. (2003): Biomass/adsorbent electrostatic interactions in expanded bed adsorption: α zeta potential study. Biotechnol. Bioeng. 83: 149–157

    Article  PubMed  CAS  Google Scholar 

  • Lipnizki, F., Hausmann, S., Laufenberg, G., Field, R., Kunz, B. (2000): Use of pervaporation-bioreactor hybrid process in biotechnology. Chem. Eng. Technol. 23: 569–577

    Article  CAS  Google Scholar 

  • Lutzer, R. G., Robinson, C. W., Glick, B. R. (1994): Two stage process for increasing cell disruption of E. coli for intracellular products recovery. In: Proceedings of the 6th European Congress of Biotechnology, Elsevier Sciences B. V., Amsterdam, 111–121

    Google Scholar 

  • Maltzahn, B. (2005): Design und Modellierung eines integrierten Bioprozesses zur Produktion natürlicher Aromastoffe. Dissertation, Universität Erlangen

    Google Scholar 

  • Matis, K. A., Blöcher, C., Mavrov, V., Chmiel, H., Lazaridis, N. (2003): Verfahren und Vorrichtung zur membranunterstützten Flotation. Patent DE 10214457.5

    Google Scholar 

  • Mavrov, V., Chmiel, H., Kaschek, M. (2003): Verfahren zur Entfernung von Bestandteilen, wie Schwebstoffen und kolloidalen Verbindungen aus wässrigen Lösungen. Patent DE 10015113.2

    Google Scholar 

  • Maximini, A. (2004): Trägergestützte Flüssigkeitsmembranen zur Trennung von Enantiomeren am Beispiel N-geschützter Aminosäurederivate. Dissertation, Universität Saarbrücken, LS für Prozesstechnik

    Google Scholar 

  • Melin, T., Rautenbach, R. (2007): Membranverfahren. Springer-Verlag

    Google Scholar 

  • Middleberg, A. P. J. (2000): Microbial cell disruption by high pressure homogenization. In: Dessai, M. A. (Hrsg.) Methods in Biotechnology, Vol. 9; Downstream Processing of Proteins: Methods and Protocols. Pub. Humana Press Inc., Totowa New York

    Google Scholar 

  • Mogren, H., Lindblom, M., Hedenskoy, G. (1974): Mechanical disintegration of microorganisms in an industrial homogenizer. Biotechnol. Bioeng. 16: 261–274

    Article  CAS  Google Scholar 

  • Mölls, H., Hörnle, R. (1971): Wirkungsmechanismus der Naßzerkleinerung in der Rührwerkskugelmühle. Dechema-Monographie 69, Tl. 2: 631–661

    Google Scholar 

  • Nfor, B. K., Ahamed, T., van Dedem, G. W. K., van der Wielen, L. A. M., van de Sandt, E. J. A. X., Eppink, M. H. M., Ottens, M. (2008): Design strategies for integrated protein purification processes: challenges, progress and outlook. J. Chem. Technol. Biotechnol. 83(2): 124–132

    Article  CAS  Google Scholar 

  • Nfor, B. K., Verhaert, P., van der Wielen, L., Hubbuch, J., Ottens, M. (2009): Rational and systematic protein purification process development: the next generation. Trends Biotechnol. 27(12): 673–679

    Article  PubMed  CAS  Google Scholar 

  • Pai, R., Doherty, M., Malone, M. (2002): Design of reactive extraction systems for bioproduct recovery. AICHE J. 48: 514–526

    Article  CAS  Google Scholar 

  • Rautenbach, R., Gröschl, A.. (1990): Separation Potential of Nanofiltration Membranes. Desalination 77, 73–84

    CAS  Google Scholar 

  • Rehacek, J., Beran, K., Bicik, V. (1969): Disintegration of microorganisms and preparation of yeast cell walls in a new type of disintegrator. Appl. Microbiol. 17: 462–466

    PubMed  CAS  Google Scholar 

  • Reif, O.-W., Scheper, T. (2004): Aufreinigung. Antranikian: Angewandte Mikrobiologie. Springer-Verlag, 429–443

    Google Scholar 

  • Reis, R., Zydney, A. (2007): Bioprocess membrane technology. J. Memb. Sci. 297: 16–50

    Article  CAS  Google Scholar 

  • Richter, K., Nottelmann, S. (2004): An empiric steady state model of lactate production in continuous fermentation with total cell retention. Eng. Life Sci. 4: 426–432

    Article  CAS  Google Scholar 

  • Rito-Palomaris, M. (2004): Practical application of aqueous two-phase partition to process development for the recovery of biological products. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 807(1), 3–11

    Article  CAS  Google Scholar 

  • Rito-Palomaris. M. und Lyddiatt. A. (2002): Process integration using aqueous two-phase systems. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 711(1–2), 81–90

    Google Scholar 

  • Rüffer, N., Heidersdorf, U., Kretzers, I., Sprenger, G. A., Raeven, L., Takors, R. (2004): Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst. Eng. 26: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Sartor, M. (2006): Untersuchungen zum Einfluss elektrokinetischer Repulsationseffekte auf die Tiefenfiltration mit partikulären Schüttbetten. Dissertation, Universität des Saarlandes, upt-Schriftenreihe 8

    Google Scholar 

  • Sartor, M., Kaschek, M., Mavrov, V., Chmiel, H. (2008): Untersuchungen zum Einfluss elektrokinetischer Wechselwirkungen auf die Adsorptionsmechanismen bei der Tiefenfiltration. Chem. Ing. Tech. 80(6): 855–859

    Article  CAS  Google Scholar 

  • Schembecker, G. (2006): Prozesssynthese in der Trenntechnik. In: Goedecke, R. (Hrsg.) Fluidverfahrenstechnik — Grundlagen, Methodik, Technik, Praxis. Wiley-VCH, Weinheim, 38–86

    Google Scholar 

  • Scheuermann, E. A. (1989): Filtrieren und Separieren: Versuch einer Eingrenzung. Filtration and Separation 2: 260

    Google Scholar 

  • Schlünder, E. U., Thurner, F. (1986): Destillation, Absorption, Extraktion. Georg Thieme Verlag, Stuttgart, New York

    Google Scholar 

  • Schmidt, S., Wu, P., Konstantinov, K., Kaiser, K., Kauling, J., Henzler, H.-J., Vogel, J. H. (2003): Kontinuierliche Isolierung von Pharmawirkstoffen mittels annularer Chromatographie. Chem. Ing. Techn. 75: 302–305

    Article  CAS  Google Scholar 

  • Schügerl, K. (2000): Integrated processing of biotechnology products. Biotechn. Advanc. 18: 581–599

    Article  Google Scholar 

  • Schütte, H., Kroner, K. H., Kula, M.-R. (1983): Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb. Technol. 5: 143–148

    Article  Google Scholar 

  • Schütte, H., Kula, M.-R. (1986): Einsatz von Rührwerkskugelmühlen und Hochdruckhomogenisatoren für den technischen Aufschluß von Mikroorganismen. Biotech-Forum 3, Heft 2

    Google Scholar 

  • Schultze, B. (1989): Schaumfraktionierung von Biotensiden. Diplomarbeit, Stuttgart

    Google Scholar 

  • Schustolla, D., Ledoux, C., Papamichael, N., Hustedt, H. (1989): Reactive (affinity) extraction of enzymes from biomass. Ber. Bunsenges. Phys. Chem. 93: 971–975

    Article  CAS  Google Scholar 

  • Shin, Y. O., Wahnon, D., Weber, M. E., Vera, J. H. (2004): Selective precipitation and recovery of xylanase using surfactant and organic solvent. Biotechnol. Bioeng. 88: 698–706

    Article  CAS  Google Scholar 

  • Stefer, B. (2004): Bioprozesstechnische Charakterisierung eines organophilen Pervaporation-Bio-Hybridreaktors am Beispiel einer Aromabiosynthese. Dissertation, Universität Bonn, Fortschritt-Berichte VDI, Reihe 3, Nr. 814

    Google Scholar 

  • Stehr, N., Schwedes, J. (1983): Verfahrenstechnische Untersuchungen an einer Rührwerkskugelmühle. Aufbereitungs-Technik 10: 597–604

    Google Scholar 

  • Strathmann, H., Chmiel, H. (1984): Die Elektrodialyse — ein Membranverfahren mit vielen Anwendungsmöglichkeiten. Chem. Ing. Tech 56: 214

    Article  CAS  Google Scholar 

  • Strathmann, H. (2004): Ion-exchange membrane separation processes. Elsevier Spektrum-Verlag, Heidelberg

    Google Scholar 

  • Strathmann, H (2010): Electromembrane Processes: Basic Aspects and Applications. Elsevier Verlag Comprehensive Membrane Science and Engineering, volume 2, 391–429

    CAS  Google Scholar 

  • Strathmann, H. (2009): Ion-Exchange Membrane Processes in Water Treatment. In: Escobar, I. C., Schäfer, A. I. (Hrsg.) Sustainability Science and Engineering, Vol 2, Sustainable Water for the Future. Elsevier, Amsterdam, The Netherlands, 141–199

    Google Scholar 

  • Susanto, A., Knieps-Grunhagen, E., von Lieres, E., Hubbuch, J. (2008): High Throughput Screening for the Design and Optimization of Chromatographic Processes: Assessment of Model Parameter Determination from High Throughput Compatible Data. Chem. Eng. Technol. 31(12): 1846–1855

    Article  CAS  Google Scholar 

  • Susanto, A., Treier, K., Knieps-Gruenhagen, von Lieres, E., Hubbuch, J. (2009): High Throughput Screening for the Design and Optimization of Chromatographic Processes: Automated Optimization of Chromatographic Phase Systems. Chem. Eng. Technol. 32(1): 140–154

    Article  CAS  Google Scholar 

  • Takors, R. (2004a): Ganzzell — ISPR — Prozessentwicklung: Chancen und Risiken. Chem. Ing. Techn. 76: 1857–1864

    Article  CAS  Google Scholar 

  • Takors, R. (2004b): Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production. Biotechnol. Prog. 20: 57–64

    Article  PubMed  CAS  Google Scholar 

  • U.S. Food and Drug Administration, Center for Drugs, Biologics, Devices and Radiologic Health (1987): Guidlines on general principles of process validations, Rickville, MD.

    Google Scholar 

  • Vogels, G., Kula, M. R. (1992): Combination of enzymatic and/or thermal pretreatment with mechanical cell disintegration. Chem. Eng. Sci. 47: 127–131

    Google Scholar 

  • Wagner, H., Blasius, E. (1989): Praxis der elektrophoretischen Trennverfahren. Springer-Verlag, Berlin-Heidelberg

    Book  Google Scholar 

  • Wahlund, P. O., Gustavson, P. E., Izumrudov, V. A., Larsson, P. O., Galaev, I. Y. (2004): Precipitation by polycation as capture step in purification of plasmid DNA from a clarified lysate. Biotechnol. Bioeng. 87: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Wekenborg, K., Susanto, A., Fredriksen, S. S., Schmidt-Traub, H. (2004): Nichtisokratische SMB-Trennung von Proteinen mittels Ionenaustauschchromatographie. Chem. Ing. Techn. 76: 815–819

    Article  CAS  Google Scholar 

  • Wensel, D. L., Kelley, D. B., Coffman, J. L. (2008): Highthroughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol. Bioeng. 100(5): 839–854

    Article  PubMed  CAS  Google Scholar 

  • Weuster-Botz, D. (2007): Process Intensification of whole-cell biocatalysis with ionic liquids. Chem. Rec. 7: 334–340

    Article  PubMed  CAS  Google Scholar 

  • Weyd, M., Richter, H., Puhlfürß, P., Voigt. I., Hamel, Ch., Seidel-Morgenstern, A. (2008): Transport of binary waterethanol mixtures through a multilayer hydrophobic zeolite membrane. Journal of Membrane Science 307, 239–248

    Article  CAS  Google Scholar 

  • Wiendahl, M., Schulze Wierling, P., Nielsen, J., Fomsgaard Christensen, D., Krarup, J., Staby, A., Hubbuch, J. (2008): High Throughput Screening for the Design and Optimization of Chromatographic Processes — Miniaturization, Automation and Parallelization of Breakthrough and Elution Studies. Chem. Eng. Technol. 31(6): 893–903

    Article  CAS  Google Scholar 

  • Willson, R. C. (1985): Supercritical Fluid Extraction. In: Comprehensive Biotechnology, Vol. 2, 567–574

    Google Scholar 

  • Winkelnkemper, T., Schembecker, G. (2010a): Purification fingerprints for experimentally based systematic downstream process development. Separation and Purification Technology 71(3): 356–366

    Article  CAS  Google Scholar 

  • Winkelnkemper, T., Schembecker, G. (2010b): Purification performance index and separation cost indicator for experimentally based systematic downstream process development. Separation and Purification Technology 72(1): 34–39

    Article  CAS  Google Scholar 

  • Winkelnkemper, T., Schuldt, S., Schembecker, G. (2011): Systematic downstream process development for purification of baccatin III with key performance indicators. Separation and Purification Technol., im Druck. DOI 10.1016/j. suppur. 2011.01.004

    Google Scholar 

  • Wyss, A., von Stockar, V., Marison, I. W. (2004): Production and characterization of liquid-core capsules made from cross-linked acrylamid copolymers for biotechnological applications. Biotechnol. Bioeng. 5: 563–572

    Article  CAS  Google Scholar 

  • Xiu, Z. L., Zeng, A. P. (2008): Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78(6): 917–926

    Article  PubMed  CAS  Google Scholar 

  • Zelić, B., Gostović, S., Vuorilehto, K., Vasić-Rački, D., Takors, R. (2004): Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol. Bioeng. 85: 638–646

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J. X., Solamo, F., Hong, T. Shearerer, M. Tressel, T. (2008): Viral clearance using disposable systems in monoclonal antibody commercial downstream processing. Biotechnol. Bioeng. 100: 488–496

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Chmiel, H., Friedle, J., Schroeder, T., Schuldt, S., Winkelnkemper, T., Schembecker, G. (2011). Aufarbeitung (Downstream Processing). In: Chmiel, H. (eds) Bioprozesstechnik. Spektrum Akademischer Verlag, Heidelberg. https://doi.org/10.1007/978-3-8274-2477-8_10

Download citation

Publish with us

Policies and ethics