Skip to main content

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 11k Accesses

Zusammenfassung

Viele Proteine bestehen aus Untereinheiten: aus Polypeptiden, die durch Disulfidbrücken oder nichtkovalent zu einer definierten Struktur zusammengehalten werden. Bei Homooligomeren sind die Untereinheiten identisch, bei Heterooligomeren verschieden. Homooligomer sind z.B. die Enzyme Katalase und Aldolase (beide vier Untereinheiten), heterooligomer sind Neurotransmitter-Rezeptoren wie der Acetylcholin-Rezeptor (fünf Untereinheiten α2βγδ) oder spannungsabhängige K+ -Kanäle (acht Untereinheiten).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Lustig, A. et al. (2000): Molecular weight determination of membrane proteins by sedimentation equilibrium at the sucrose or Nycodenzadjusted density of the hydrated detergent micelle. BBA 1464, 199–206

    Article  CAS  PubMed  Google Scholar 

  2. Machaidze, G. & Lustig, A. (2006): SEGAL, a semiautomatic program for fitting sedimentation equilibrium patterns from analytical ultracentrifugation. J. Biol. Phys. Chem. 6, 91–102

    Article  CAS  Google Scholar 

  3. Deisenhofer, J. et al. (1985): Structure of the proteins subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 A resolution. Nature 318, 618–624

    Article  Google Scholar 

  4. Cooper, E. et al. (1991): Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350, 235–238

    Article  CAS  PubMed  Google Scholar 

  5. Lebherz, H. & Rutter, W. (1969): Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry 8, 109–121

    Article  CAS  PubMed  Google Scholar 

  6. MacKinnon, R. (1991): Determination of the subunit stoichiometry of a voltageactivated K + channel. Nature 350, 232–235

    Article  CAS  PubMed  Google Scholar 

  7. Penhoet, E. et al. (1967): The subunit structure of mammalian fructose diphosphate aldolase. Biochemistry 6, 2940–2949

    Article  CAS  PubMed  Google Scholar 

  8. Kobashi, K. (1968): Catalytic oxidation of sulfhydryl groups by ophenanthroline copper complex. BBA 158, 239–245

    CAS  PubMed  Google Scholar 

  9. Zhang, M. & Kaltashov I.A. (2006): Mapping of Protein Disulfide Bonds Using Negative Ion Fragmentation with a Broadband Precursor Selection. Anal. Chem. 78, 4820–4829

    Article  CAS  PubMed  Google Scholar 

  10. Rehm, H. et al. (1986): Molecular characterization of synaptophysin, a major calcium binding protein of the synaptic vesicle membrane. EMBO J. 5, 535–541

    CAS  PubMed  Google Scholar 

  11. Thomas, L. et al. (1988): Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242, 1050–1053

    Article  CAS  PubMed  Google Scholar 

  12. Johnston, P. & Südhof, T. (1990): The multisubunit structure of synaptophysin; relationship between disulfide bonding and homo-oligomerization. J. biol. Chem. 265, 8869–8873

    CAS  PubMed  Google Scholar 

  13. Arthur, C. & Stowell, M. (2007): Structure of synaptophysin: A hexameric MARVEL domain channel protein. Structure 15, 707–714

    Article  CAS  PubMed  Google Scholar 

  14. Hansen, R. et al. (2007): Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4’-dithio-dipyridine. Anal. Biochem. 363, 77–82

    Article  CAS  PubMed  Google Scholar 

  15. Darawshe, S. et al. (1987): Quaternary structure of erythrocruorin from the nematode Ascaris suum. Biochem. J. 242, 689–694

    CAS  PubMed  Google Scholar 

  16. Waheed, A. et al. (1990): Quaternary structure of the Mr 46 000 mannose 6-phosphate specific receptor: effect of ligand, pH, and receptor concentration on the equilibrium between dimeric and tetrameric receptor. Biochemistry 29, 2449–2455

    Article  CAS  PubMed  Google Scholar 

  17. Darawshe, S. & Daniel, E. (1991): Molecular symmetry and arrangement of subunits in extracellular hemoglobin from the nematode Ascaris suum. Eur. J. Biochem. 201, 169–173

    Article  CAS  PubMed  Google Scholar 

  18. Hucho, F. et al. (1975): Investigation of the symmetry of oligomeric enzymes with bifunctional reagents. Eur. J. Biochem. 59, 79–87

    Article  CAS  PubMed  Google Scholar 

  19. Klotz, I. et al. (1970): Quaternary structure of proteins. Ann. Rev. Biochem. 39, 25–62

    Article  CAS  PubMed  Google Scholar 

  20. Gaffney, B. (1985): Chemical and biochemical crosslin-king of membrane components. BBA 822, 289–317

    CAS  PubMed  Google Scholar 

  21. Hucho, F. et al. (1978): The acetylcholine receptor as part of a protein complex in receptor-enriched membrane fragments from Torpedo californica electric tissue. Eur. J. Biochem. 83, 335–340

    Article  CAS  PubMed  Google Scholar 

  22. Langosch, D. et al. (1988): Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer. Proc. Natl. Acad. Sci. USA 85, 7394–7398

    Article  CAS  PubMed  Google Scholar 

  23. Kapp, O. et al. (1990): Calculation of subunit stoichiometry of large multisubunit proteins from amino acid compositions. Anal. Biochem. 184, 74–82

    Article  CAS  PubMed  Google Scholar 

  24. Pestka, et al. (1983): Specific immunoassay for protein dimers, trimers and higher oligomers. Anal. Biochem. 132, 328–333

    Article  CAS  PubMed  Google Scholar 

  25. Whiting, P. et al. (1987): Neuronal nicotinic acetylcholine receptor β-subunit is coded for by the cDNA clone α4. FEBS lett. 219, 459–463

    Article  CAS  PubMed  Google Scholar 

  26. Li, M. et al. (1992): Specification of subunit assembly by the hydrophilic amino-terminal domain of the shaker potassium channel. Science 257, 1225–1230

    Article  CAS  PubMed  Google Scholar 

  27. Maniolos, M. (1990): Transmembrane helical interactions and the assembly of the T cell receptor complex. Science 249, 274–277

    Article  Google Scholar 

  28. Pakula, A. & Simon, M. (1992): Determination of transmembrane protein structure by disulflide cross-linking: the E. coli Tar receptor. Proc. Natl. Acad. Sci. USA 89, 4144–4148

    Article  CAS  PubMed  Google Scholar 

  29. Sumikawa, K. (1992): Sequences on the N-terminus of Ach receptor subunits regulate their assembly. Mol. Brain Res. 13, 349–353

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Rehm, H., Letzel, T. (2010). Untereinheiten. In: Der Experimentator: Proteinbiochemie/Proteomics. Experimentator. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2313-9_8

Download citation

Publish with us

Policies and ethics