Skip to main content

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 11k Accesses

Zusammenfassung

Das Wort ist Diener der Verhältnisse; es schafft keine. Das ist gut so. Dennoch gibt es Ausnahmen und Ausnahmen tummeln sich in der Proteinforschung. Ihr hing von Ende der 70er bis Ende der 90er Jahre etwas Hinterwäldlerisches an. An Proteinen allein mit proteinchemischen Methoden zu forschen, das taten Verknöcherte, die den Absprung in die Moderne, die Molekularbiologie, nicht geschafft hatten. Solch einem konnte es geschehen, dass er sich an die Reinigung eines Rezeptors machte, nur um nach einem Jahr der Mühsal in Nature zu lesen, dass die cDNA expressionskloniert worden war. Dann gab er entweder auf, oder reinigte weiter und wenn die Reinigung glückte, konnte er im J. Biol. Chem. veröff entlichen, was für’s PNAS gedacht war. Der Ruhm blieb aus. Die Molekularbiologen hatten die Schau gestohlen. Und dies – wie sich der Proteinfreund zähneknirschend eingestehen musste – zu Recht. Mit der cDNA ließ sich mehr anfangen als mit dem gereinigten Protein: Man erhielt die vollständige Sequenz, man konnte die Sequenz beliebig verändern, das Protein in Grammengen exprimieren, Antikörper gegen das ganze Protein oder Teile davon herstellen, die Funktion in Abhängigkeit von Mutationen untersuchen etc. pp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson L. & Anderson, N. (1998): Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 19, 1853–1861

    Article  CAS  PubMed  Google Scholar 

  2. Bär, S. & Schreck, R. (2003): Geld zum Forschen. Lj-Verlag, Freiburg. Das Buch ist vergriffen. Vielleicht finden Sie es in der Instituts-Bibliothek.

    Google Scholar 

  3. Hart, L. (1991): Strategy, Meridian books

    Google Scholar 

  4. Petricoin, E. et al. (2002): Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577

    Article  CAS  PubMed  Google Scholar 

  5. Rabilloud, T. (2002): Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10

    Article  CAS  PubMed  Google Scholar 

  6. Bruder, C. et al. (2008): Phenotypically Concordant and Discordant Monozygotic Twins Display Different DNA Copy-Number-Variation Profiles. Am. J. Human Gen. 82, 763–771

    Article  CAS  Google Scholar 

  7. Ahram, M. et al. (2003): Evaluation of ethanolfixed, paraffinembedded tissues for proteomic applications. Proteomics 3, 413–421

    Article  CAS  PubMed  Google Scholar 

  8. Banks, R. et al. (1999): The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis – preliminary findings. Electrophoresis 20, 689–700

    Article  CAS  PubMed  Google Scholar 

  9. Mouledous, L. et al. (2002): Lack of compatibility of histological staining methods with proteomic analysis of laser capture microdissected brain samples. J. Biomol. Tech. 13, 258–264

    CAS  PubMed  Google Scholar 

  10. Annamraju, S. et al (2008): Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis. Anal. Biochem. 379, 192–195

    Article  CAS  Google Scholar 

  11. Finnie, C. & Svensson, B. (2002): Proteolysis during the isoelectric focusing step of two-dimensional gel electrophoresis may be a common problem. Anal. Biochem. 311, 182–186

    Article  CAS  PubMed  Google Scholar 

  12. Henningsen, R. et al. (2002): Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2, 1479–1488

    Article  CAS  PubMed  Google Scholar 

  13. Herbert, B. et al (2003): ß-elimination: An unexpected artefact in proteome analysis. Proteomics 3, 826–831

    Article  CAS  PubMed  Google Scholar 

  14. Klein, C. et al. (2005): The membrane proteome of Halobacterium salinarum. Proteomics 5, 180–197

    Article  CAS  PubMed  Google Scholar 

  15. Musante, L. et al. (1998): Resolution of fibronectin and other uncharacterized proteins by two-dimensional polyacrylamide electrophoresis with thiourea. J. Chromatogr. B 705, 351–356

    Article  CAS  Google Scholar 

  16. Stanley, B. et al. (2003): Optimizing protein solubility for two dimensional gel electrophoresis analysis of human myocardium. Proteomics 3, 815–820

    Article  CAS  PubMed  Google Scholar 

Übersichtsartikel:

  1. Shaw, M. & Riederer, B. (2003): Sample preparation for two-dimensional gel electrophoresis. Proteomics 3, 1408–1417

    Article  CAS  PubMed  Google Scholar 

  2. Görg, A. et al. (2002): Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2, 1652–1657

    Article  PubMed  Google Scholar 

  3. Daniels, M. & Landers, T. (1996): Preparativescale isoelectric purification of proteins without carrier ampholytes. Science Tools from Pharmacia Biotech 1, 23–25

    Google Scholar 

  4. Herbert, B. & Righetti, P. (2000): A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoeletric membranes. Electrophoresis 21, 3639–3648

    Article  CAS  PubMed  Google Scholar 

  5. Ros, A. et al. (2002): Protein purification by Off-Gel electrophoresis. Proteomics 2, 151–156

    Article  CAS  PubMed  Google Scholar 

  6. Hoffmann, P. et al. (2001): Continous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: A non two-dimensional gel electrophoresisbased proteome analysis strategy. Proteomics 1, 807–818

    Article  CAS  PubMed  Google Scholar 

  7. Weber, G. & Bocek, P. (1996): Optimized continuous flow electrophoresis. Electrophoresis, 17, 1906–1910

    Article  CAS  PubMed  Google Scholar 

  8. Zischka, H. et al. (2006): Differential analysis of Saccharomyces cerevisiae mitochondria by free flow electrophoresis. Mol. Cell Proteomics 5, 2185–2200

    Article  CAS  Google Scholar 

  9. Boschetti, E. & Righetti, P. (2008): The ProteoMiner in the proteomic arena: a nondepleting tool for discovering lowabundance species. J. Proteomics 71, 255–264.

    Article  CAS  Google Scholar 

  10. Righetti, P. et al. (2006): Protein EqualizerTM Technology: The quest for a democratic proteome. Proteomics 6, 3980 - 3992. Tip: Falls Sie je mal einen Übersichtsartikel schreiben müssen, nehmen Sie sich den zum Vorbild!

    Google Scholar 

  11. Sihlbom, C. et al. (2008): Evaluation of the combination of bead technology with SELDI-TOF-MS and 2-D DIGE for detection of plasma proteins. J. Proteome Res. 7, 4191–4198

    Article  CAS  PubMed  Google Scholar 

  12. Corbett, J. et al. (1994): Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15, 1205–1211

    Article  CAS  PubMed  Google Scholar 

  13. Kaltschmidt, E. & Wittmann, H. (1970): Ribosomal proteins VII: Two dimensional polyacrylamide gel elctrophoresis for fingerprinting ribosomal proteins. Anal. Biochem. 36, 401–412

    Article  CAS  PubMed  Google Scholar 

  14. Klose, J. (1975): Protein mapping by combined isoelectric focusing and electrophoresis in mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243

    CAS  PubMed  Google Scholar 

  15. O’Farrell, P. (1975): High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021

    PubMed  Google Scholar 

  16. Sanchez, J. et al. (1997): Improved and simplified ingel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18, 324–327

    Article  CAS  PubMed  Google Scholar 

  17. Corbett, J. et al. (1994): Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15, 1205–1211

    Article  CAS  PubMed  Google Scholar 

  18. Corbett, J. et al. (1994): Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15, 1205–1211

    Article  CAS  PubMed  Google Scholar 

  19. Dockham, P. et al. (1986): An isoelectric focusing procedure for erythrocyte membrane proteins and its use for two-dimensional electrophoresis. Anal. Biochem. 153, 102–115

    Article  CAS  PubMed  Google Scholar 

  20. Garrels, J. et al. (1979): Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254, 7961–7977

    CAS  PubMed  Google Scholar 

  21. Klein, C. et al. (2005): The membrane proteome of Halobacterium salinarum. Proteomics 5, 180–197

    Article  CAS  PubMed  Google Scholar 

  22. Corbett, J. et al. (1994): Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15, 1205–1211

    Article  CAS  PubMed  Google Scholar 

  23. Loo, J. et al. (1999): High sensitivity mass spectrometric methods for obtaining intact molecular weights from gelseparated proteins. Electrophoresis 20, 743–748

    Article  CAS  PubMed  Google Scholar 

  24. Rabilloud, T. (2002): Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10

    Article  CAS  PubMed  Google Scholar 

  25. Goshe, M. et al. (2003): Afinity labeling of highly hydrophobic integral membrane proteins for proteome wide analysis. J. Proteome Res. 2, 153–161

    Article  CAS  PubMed  Google Scholar 

  26. Su, X. et al. (2009): Enrichment and characterisation of histones by 2D-hydroxyapatite/reversedphase liquid chromatography mass spectrometry. Anal. Biochem. 388, 47–55

    Article  CAS  PubMed  Google Scholar 

  27. Washburn, M. et al. (2001): Largescale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247

    Article  CAS  Google Scholar 

  28. Wu, C. et al. (2003): A method for the comprehensive proteomic analysis of membrane proteins. Nature Biotechnol. 21, 532–538

    Article  CAS  Google Scholar 

  29. Gade, D. et al. (2003): Evaluation of two dimensional difference gel electrophoresis for protein profiling. J. Mol. Microbiol. Biotechnol. 5, 240–251

    Article  CAS  PubMed  Google Scholar 

  30. Tonge, R. et al. (2001): Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377–396

    Article  CAS  PubMed  Google Scholar 

  31. Hartinger, J. et al. (1996): 16-BAC/SDS-PAGE: A two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem. 240, 126–133

    Article  CAS  PubMed  Google Scholar 

  32. Manabe, T. et al. (2003): Detection of proteinprotein interactions and a group of immunoglobulin Gassociated minor proteins in human plasma by nondenaturing and denaturing two-dimensional gel electrophoresis. Proteomics 3, 832–846

    Article  CAS  PubMed  Google Scholar 

  33. Yokoyama, R. et al. (2009): Isoelectric focusing of highmolecularweight protein complex under native conditions using agarose gel. Anal. Biochem. 387, 60–63

    Article  CAS  PubMed  Google Scholar 

  34. Lee, B. et al (2003): Highresolution separation of proteins by a threedimensional sodium dodecyl sulfate polyacrylamide cube gel electrophoresis. Anal. Biochem. 317, 271–275

    Article  CAS  PubMed  Google Scholar 

  35. Hunkapiller, M. et al. (1983): Isolation of microgramm quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 91, 227–236

    Article  CAS  PubMed  Google Scholar 

  36. Hsieh, K. et al. (1988): Electroblotting onto glassfiber filter from an analytical isoelectrofocusing gel: a preparative method for isolating proteins for Nterminal sequencing. Anal. Biochem. 170, 1–8

    Article  CAS  PubMed  Google Scholar 

  37. Mackun, K. & Downard, K. (2003): Strategy for identifying proteinprotein interactions of gelseparated proteins and complexes by mass spectrometry. Anal. Biochem. 318, 60–70

    Article  CAS  PubMed  Google Scholar 

  38. Matsudaira, P. (1987): Sequence from picomole quantities of proteins electroblotteed onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035–10038

    CAS  PubMed  Google Scholar 

  39. Prussak, C. et al. (1989): Peptide production from proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Anal. Biochem. 178, 233–238

    Article  CAS  PubMed  Google Scholar 

  40. Vandekerckhove et al. (1985): Protein-blotting on polybrenecoated glass fiber sheets. Eur. J. Biochem. 152, 9–19

    Article  CAS  PubMed  Google Scholar 

  41. Xu, Q. & Shively, J. (1988): Microsequence analysis of peptides and proteins; improved electroblotting of proteins onto membranes and derivatized glassfiber sheets. Anal. Biochem. 170, 19–30

    Article  CAS  PubMed  Google Scholar 

  42. Lind, P. & Eaker, D. (1982): Aminoacid sequences of the asubunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan. Eur. J. Biochem. 124, 441–447

    Article  CAS  PubMed  Google Scholar 

  43. Cleveland, D. et al. (1977): Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102–1106

    CAS  PubMed  Google Scholar 

  44. Kennedy, T. et al. (1988): Sequencing of proteins from two-dimensional gels by using in situ digestion and transfer of peptides to polyvinylidene difluoride membranes: application to proteins associated with sensitization in Aplysia. Proc. Natl. Acad. Sci. USA 85, 7008–7012

    Article  CAS  PubMed  Google Scholar 

  45. Leube et al. (1987): Synaptophysin: molecular organization and mRNA expression as determined from cloned cDNA. EMBO J. 6, 3261–3268

    CAS  PubMed  Google Scholar 

  46. Prussak, C. et al. (1989): Peptide production from proteins separated by sodium dodecyl sulfat polyacrylamide gel electrophoresis. Anal. Biochem. 178, 233–238

    Article  CAS  PubMed  Google Scholar 

  47. Vercaigne-Marko, D. et al. (2000): Improvement of Staphylococcus aureus V8 protease hydrolysis of bovine hämoglobin by its adsorption on to a solid phase in the presence of SDS: peptide mapping and obtention of two hämopoietic peptides. Biotechnol. Appl. Biochem. 31, 127–134

    Article  CAS  PubMed  Google Scholar 

  48. Morrison, J. et al. (1990): Studies on the formation, separation and characterization of cyanogen bromide fragments of human A1 apolipoprotein. Anal. Biochem. 186, 154–152

    Article  Google Scholar 

  49. Fotiadis, D. et al. (2001): Structural characterization of two Aquaporins isolated from native spinach leaf plasma membranes. J. Biol. Chem. 276, 1707–1714

    Article  CAS  PubMed  Google Scholar 

  50. Sutton, C. et al. (1997): The analysis of myocardial proteins by infrared and ultraviolet laser-desorption mass spectrometry. Electrophoresis 18, 424–431

    Article  CAS  PubMed  Google Scholar 

  51. Bensalem, N. et al. (2007): High sensitivity identification of membrane proteins by MALDI TOF mass spectrometry using polystyrene beads. J. Proteome Res. 6, 1595–1602

    Article  CAS  PubMed  Google Scholar 

  52. Bartlet-Jones, M. et al. (1994): Peptide ladder sequencing by mass spectrometry using a novel, volatile degradation reagent. Rapid Comm. Mass Spectrom. 8, 737–742

    CAS  Google Scholar 

  53. Beavis, R. & Chait, B. (1996): Matrixassisted laserdesorption ionization mass spectrometry of proteins. Methods Enzymol. 270, 519–551

    Article  CAS  PubMed  Google Scholar 

  54. Henderson, L. et al. (1979): A micromethod for complete removal of dodecyl sulfate from proteins by ionpair extraction. Anal. Biochem. 93, 153–157

    Article  CAS  PubMed  Google Scholar 

  55. Landry, F. et al. (2000): A method for application of samples to matrixassisted laser desorption ionization time-of-flight targets that enhances peptide detection. Anal. Biochem. 279, 1–8

    Article  CAS  PubMed  Google Scholar 

  56. Loo, J. et al. (1999): High sensitivity mass spectrometric methods for obtaining intact molecular weights from gelseparated proteins. Eletrophoresis 20, 743–748

    Article  CAS  Google Scholar 

  57. Vorm, O. & Mann, M. (1994): Improved mass accuracy in matrix-assisted laser desorption/ionization time-off ight mass spectrometry of peptides. J. Am. Soc. Mass Spectrom. 5, 955–958

    Article  CAS  Google Scholar 

  58. Vorm, O. et al. (1994): Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal. Chem. 66, 3281–3287

    Article  CAS  Google Scholar 

  59. Carroll, J. et al. (2007): Identification of membrane proteins by tandem mass spectrometry of protein ions. Proc. Natl. Acad. Sci. USA 104, 14330–14335

    Article  CAS  PubMed  Google Scholar 

  60. Cech, N. & Enke, C. (2001): Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387

    Article  CAS  PubMed  Google Scholar 

  61. Chait, B. & Kent, S. (1992): Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science 257, 1885–1894

    Article  CAS  PubMed  Google Scholar 

  62. Daniel J.M, et al (2002): Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 216, 1–27

    Article  CAS  Google Scholar 

  63. Garcia, M. et al. (2002): Effect of the mobile phase composition on the separation and detection of intact proteins by reversed-phase liquid chromatography-electrospray mass spectrometry. J. Chromat. A 957, 187–199

    Article  CAS  Google Scholar 

  64. Le Coutre J. et al (2000): Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry 39, 4237–4242

    Article  CAS  PubMed  Google Scholar 

  65. Loo, J.A. (1997): Studying noncovalent protein complexes by ESI. Mass Spectrom. Rev. 16, 1–23

    Article  CAS  PubMed  Google Scholar 

  66. Loo, J.A. (2000): Electrospray ionization mass spectrometry: A technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186

    Article  CAS  Google Scholar 

  67. Schrattenholz, A. (2001): Methoden der Proteomforschung. Spektrum Akad. Verlag, ISBN 3-8274–1153-X

    Google Scholar 

  68. Sutton, C. et al. (1997): The analysis of myocardial proteins by infrared and ultraviolet laser desorption mass spectrometry. Electrophoresis 18, 424–431

    Article  CAS  PubMed  Google Scholar 

  69. Troxler, H. et al. (1999): Electrospray ionization mass spectrometry: Analysis of the Ca2+ -binding of human recombinant a-parvalbumin and nine mutant proteins. Anal. Biochem. 268, 64–71

    Article  CAS  PubMed  Google Scholar 

  70. Gobom, J. et al. (1999): Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105–116

    Article  CAS  PubMed  Google Scholar 

  71. Schrattenholz, A. (2001): Methoden der Proteomforschung. Spektrum Akad. Verlag, ISBN 3-8274-1153-X

    Google Scholar 

  72. Chernushevich, I., et al. (2001): An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36, 849–865

    Article  CAS  PubMed  Google Scholar 

  73. Nelson et al. (1994): Quantitative determination of proteins by matrix-assaited laser-desorption ionization time-of-flight mass spectrometry. Anal. Chem. 66, 1408–1415

    Article  CAS  Google Scholar 

  74. Chernushevich, I., et al. (2001): An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36, 849–865

    Article  CAS  PubMed  Google Scholar 

  75. Klaus Blaum, Mainz, Wintersemester 2004/05, Vorlesung: Spektroskopie in Ionenfallen – Grundlagen und moderne Experimente mit gekühlten und gespeicherten Ionen

    Google Scholar 

  76. http://tuprints.ulb.tu-darmstadt.de/epda/000315/Dissertation_Runge.pdf

  77. Pappin, D. (1997): Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol. Biol. 64, 165–173

    CAS  PubMed  Google Scholar 

  78. Steen, H. & Mann, M. (2004): The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews Molecular Cell Biology 5, 699–711

    Article  CAS  PubMed  Google Scholar 

  79. Cool, D. & Hardiman, A. (2004): Cterminal sequencing of peptide hormones using carboxypeptidase Y and SELDI-TOF mass spectrometry. Biotechniques. 36, 32–34

    CAS  PubMed  Google Scholar 

  80. Doucette, A. & Li, L. (2001): Investigation of the applicability of a sequential digestion protocol using trypsin and leucine aminopeptidase M for protein identification by matrix-assisted laser desorption/ionization mass spectrometry. Eur. J. Mass Spectrom. 7, 157–170

    Article  CAS  Google Scholar 

  81. Letzel T. (2008): Realtime mass spectrometry in enzymology. Anal. Bioanal. Chem. 390, 257–261

    Article  CAS  PubMed  Google Scholar 

  82. Mano, N. et al. (2003): Exopeptidase degradation for the analysis of phosphorylation site in a monophosphorylated peptide with matrixassisted laser desorption/ionization mass spectrometry. Anal. Sciences 19, 1469–1472

    Article  CAS  Google Scholar 

  83. Patterson, D. et al. (1995): Cterminal ladder sequencing via matrixassisted laser desorption mass spectrometry coupled with carboxypeptidase Y timedependent and concentrationdependent digestions. Anal. Chem. 67, 3971–3978

    Article  CAS  PubMed  Google Scholar 

  84. Bartlet-Jones, M. et al. (1994): Peptide ladder sequencing by mass spectrometry using a novel, volatile degradation reagent. Rapid Comm. Mass Spectrom. 8, 737–742

    Article  CAS  Google Scholar 

  85. Chait, B. & Kent, S. (1992): Weighing naked proteins: practical, highaccuracy mass measurement of peptides and proteins. Science 257, 1885–1894

    Article  CAS  PubMed  Google Scholar 

  86. Chait, B. et al. (1993): Protein Ladder Sequencing. Science 262, 89–92

    Article  CAS  PubMed  Google Scholar 

  87. Thiede, B. et al. (1995): MALDI-MS for Cterminal sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. FEBS Lett. 357, 65–69

    Article  CAS  PubMed  Google Scholar 

  88. Woods, A. et al. (1995): Simplified highsensitivity sequencing of a major histocompatibility complex classIassociated immunoreactive peptide using matrixassisted laserdesorbtion ionization mass spectrometry. Anal. Biochem. 226, 15–25. Die Details ihres Vorgehens erklären die Autoren schlecht bis gar nicht. Das Paper ist nur als Anhaltspunkt für eigene Testversuche brauchbar.

    Google Scholar 

  89. Bär, S. (2003): Die Zunft, Lj-Verlag Freiburg. Das Buch ist vergriffen, vielleicht finden Sie es in Ihrer Bibliothek.

    Google Scholar 

  90. De Boer, A. et al. (2004): On-Line Coupling of high-performance liquid chromatography to a continuousflow enzyme assay based on electrospray ionization mass spectrometry. Anal. Chem. 76, 3155–3161

    Article  CAS  PubMed  Google Scholar 

  91. Grandori, R. (2002): Detecting equilibrium cytochrome c folding intermediates by electrospray ionization mass spectrometry: two partially folded forms populate the moltenglobule state. Protein Science 11, 453–458

    Article  CAS  PubMed  Google Scholar 

  92. Bantschef, M, et al. (2007): Quantitative mass spectrometry in proteomics: A critical review. Anal. Bioanal. Chem. 389, 1017–1031

    Article  CAS  Google Scholar 

  93. Gygi, S. et al. (1999): Quantitative analysis of complex protein mixtrues using isotopecoded afinity tags. Nature Biotechn. 17, 994–999

    Article  CAS  Google Scholar 

  94. Peters, E. et al. (2001): A novel multifunctional labeling reagent for enhanced protein characterization with mass spectrometry. Rapid Comm. Mass Spectrom. 15, 2387–2392

    Article  CAS  Google Scholar 

  95. Tao, A. & Aebersold, R. (2003): Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr. Op. Biotechn. 14, 110–118

    Article  CAS  Google Scholar 

  96. Zhou, H. et al. (2002): Quantitative proteome analysis by solid phase isotope tagging and mass spectrometry. Nature Biotechn. 20, 512–515

    Article  CAS  Google Scholar 

  97. Ong, S. et al. (2002): Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386

    Article  CAS  PubMed  Google Scholar 

  98. Ong, S. et al. (2003): Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181

    Article  CAS  PubMed  Google Scholar 

  99. Beavis, R. & Chait, B. (1996): Matrixassisted laserdesorption ionization mass spectrometry of proteins. Methods Enzymol. 270, 519–551

    Article  CAS  PubMed  Google Scholar 

  100. Chait, B. & Kent, S. (1992): Weighing naked proteins: practical, highaccuracy mass measurement of peptides and proteins. Science 257, 1885–1894

    Article  CAS  PubMed  Google Scholar 

  101. Limbach et al. (1995): Characterization of oligonucleotides and nucleic acids by mass spectrometry. Curr. Opin. Biotechnol. 6, 96–102

    Article  CAS  PubMed  Google Scholar 

  102. Stahl, B. et al. (1994): The oligosaccharides of the Fe(III)-Zn(III) purple acid phosphatase of the red kidney bean. Eur. J. Biochem. 220, 321–330

    Article  CAS  PubMed  Google Scholar 

  103. Stults, J. (1995): Matrixassisted laserdesorption ionization mass spectrometry (MALDI-MS). Current opinion in structural biology 5, 691–698. D er Review enthält eine Reihe von Referenzen, die spezielle Themen ansprechen, z.B. Unterscheidung von Sulfat- und Phosphatgruppen, MALDI mit Infrarotlasern und Bernsteinsäurematrix, subfemtomolare Nachweisgrenzen mit einer Dünnschichtmatrix, hochempfindlicher Proteinnachweis im Attomol-Bereich, höchstauflösende Massenspektrometrie.

    Google Scholar 

  104. Baggerly, K. et al. (2004): Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20.5, 777–785

    Article  CAS  Google Scholar 

  105. Neuhoff, N. et al. (2003): Mass spectrometry for the detection of differentially expressed proteins: a comparison of surfaceenhancedlaser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Comm. Mass Spectrom. 18, 149–156

    Article  CAS  Google Scholar 

  106. Petricoin, E. et al. (2002): Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577

    Article  CAS  PubMed  Google Scholar 

  107. Wilson, L. et al. (2004): Detection of differentially expressed proteins in earlystage melanoma patients using SELDI-TOF mass spectrometry. Ann. N.Y. Acad. Sci. 1022, 317–322

    Article  CAS  PubMed  Google Scholar 

  108. McDonnell,L. & Heeren, R.(2007):Imaging mass spectro-metry. Mass Spectrometry Reviews 26, 606–643

    Article  CAS  PubMed  Google Scholar 

  109. Rohner, T. et al. (2004): MALDI mass spectrometric imaging biological tissue sections. Mech. Ageing Dev. 126, 177–185

    Article  CAS  Google Scholar 

  110. Stoeckli, M. et al. (2001): Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nature Medicin 7, 493–496

    Article  CAS  Google Scholar 

  111. 312 Kapitel 7 • Proteomics

    Google Scholar 

  112. Anderson, K. et al. (2003): Protein expression changes in spinal muscular atrophy revealed with a novel antibody array technology. Brain 126, 2052–2064

    Article  CAS  PubMed  Google Scholar 

  113. Kiyonaka, S. et al. (2004): Semiwet peptide/protein array using supramolecular hydrogel. Nat. Materials 3, 58–64

    Article  CAS  Google Scholar 

  114. Quackenbush, J. (2002): Microarray data normalization and transformation. Nature Genet. Suppl. 32, 496–501

    Article  CAS  Google Scholar 

  115. Mayer, G. (2009): The chemical biology of aptamers. Angew. Chem. Int. Ed. 48, 2672–2689

    Article  CAS  Google Scholar 

  116. Morris, K. et al. (1998): High afinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. USA 95, 2902–2907

    Article  CAS  PubMed  Google Scholar 

  117. Theis, M. et al. (2004): Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc. Natl. Acad. Sci. USA 101, 11221–11226

    Article  CAS  PubMed  Google Scholar 

  118. Doolittle, R. & Armentrout, R. (1968): Pyrrolidonyl peptidase. An enzyme for selective removal of pyrrolidonecarboxylic acid residues from polypeptides. Biochemistry 7, 516–521

    Article  CAS  PubMed  Google Scholar 

  119. Georghe, M. et al (1997): Optimized alcoholic deacetylation of Nacetylblocked polypeptides for subsequent Edman degradation. Anal. Biochem. 254, 119–125

    Article  Google Scholar 

  120. Wellner, D. et al (1990): Sequencing of peptides and proteins with blocked Nterminal amino acids: Nacetylserine or Nacetylthreonine. Proc. Natl. Acad. Sci. USA 87, 1947–1949

    Article  CAS  PubMed  Google Scholar 

  121. Baumann, M. (1990): Comparative gas phase and pulsed liquid phase sequencing on a modified applied biosystems 477 A sequencer. Anal. Biochem. 190, 198–208

    Article  CAS  PubMed  Google Scholar 

  122. Fischer, P. (1992): 25 Jahre automatisierte Proteinsequenzierung. Nachr. Chem. Techn. Lab. 40, 963–971

    CAS  Google Scholar 

  123. Bär, S. (2003): »Die Zunft« Lj-Verlag, Freiburg. Das Buch ist vergriffen.

    Google Scholar 

  124. Bergman, T. et al. (2001): Chemical Cterminal protein sequence analysis: improved sensitivity, length of degradation, proline passage, and combination with edman degradation. Anal. Biochem. 290, 74–82

    Article  CAS  PubMed  Google Scholar 

  125. Inglis, A. (1991): Chemical procedures for Cterminal sequencing of peptides and proteins. Anal. Biochem. 195, 183–196

    Article  CAS  PubMed  Google Scholar 

  126. Li, J. & Liang, S. (2002): C-Terminal Sequence Analysis of Peptides using Triphenylgermanyl Isothiocyanate. Anal. Biochem. 302, 108–113

    Article  CAS  PubMed  Google Scholar 

  127. Schlack, P. & Kumpf, W. (1926): Über eine neue Methode zur Ermittelung der Konstitution von Peptiden. Hoppe-Seyler’s Z. Physiol. Chemie 154, 125–170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Rehm, H., Letzel, T. (2010). Proteomics. In: Der Experimentator: Proteinbiochemie/Proteomics. Experimentator. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2313-9_7

Download citation

Publish with us

Policies and ethics