The genes behind rheumatology

  • Thomas Häupl
  • Andreas Grützkau
  • Bruno Stuhlmüller
  • Karl Skriner
  • Gerd Burmester
  • Andreas Radbruch
Part of the Progress in Inflammation Research book series (PIR)


Chronic inflammation is the central pathophysiology in rheumatic diseases. Blood contains most types of immune cells involved in this inflammation. Investigation of purified cell types has various advantages but also technical limitations compared to whole blood. Infiltration of immune cells into involved organs is a leading phenomenon and molecular processes in the inflamed tissue seem to change and increase by number and intensity compared to those in the blood. Many genes found differentially expressed in tissues are elevated as part of the infiltration, while only a smaller fraction becomes regulated upon inflammation. Gene products as biomarkers, which are affected by disease-specific pathomechanisms or by treatment, are of diagnostic importance. With the growing number of different biologics, markers indicative of different pathomechanisms are important for predicting drug responsiveness and treatment stratification. Finally, a comparison of pathological signatures between different types of diseases will contribute to identifying both similarities and differences in molecular processes and thus may provide insight into the driving mechanisms and etiology of rheumatic diseases.


Rheumatoid Arthritis Immune Cell Rheumatic Disease Synovial Tissue Molecular Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bang H, Egerer K, Gauliard A, Luthke K, Rudolph PE, Fredenhagen G et al (2007) Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum 56(8): 2503–11PubMedCrossRefGoogle Scholar
  2. 2.
    Mathsson L, Mullazehi M, Wick MC, Sjoberg O, van Vollenhoven R, Klareskog L et al (2008) Antibodies against citrullinated vimentin in rheumatoid arthritis: Higher sensitivity and extended prognostic value concerning future radiographic progression as compared with antibodies against cyclic citrullinated peptides. Arthritis Rheum 58(1): 36–45PubMedCrossRefGoogle Scholar
  3. 3.
    Riemekasten G, Hahn BH (2005) Key autoantigens in SLE. Rheumatology (Oxford) 44(8): 975–82CrossRefGoogle Scholar
  4. 4.
    Pfueller B, Wolbart K, Bruns A, Burmester GR, Hiepe F (2001) Successful treatment of patients with systemic lupus erythematosus by immunoadsorption with a C1q column: a pilot study. Arthritis Rheum 44(8): 1962–3PubMedCrossRefGoogle Scholar
  5. 5.
    Jonsdottir T, Gunnarsson I, Risselada A, Welin Henriksson E, Klareskog L, vanVollenhoven RF (2008) Treatment of refractory SLE with rituximab plus cyclophosphamide: clinical effects, serological changes, and predictors of response. Ann Rheum Dis 67(3): 330–334PubMedCrossRefGoogle Scholar
  6. 6.
    Vallerskog T, Gunnarsson I, Widhe M, Risselada A, Klareskog L, vanVollenhoven R et al (2007) Treatment with rituximab affects both the cellular and the humoral arm of the immune system in patients with SLE. Clin Immunol 122(1): 62–74PubMedCrossRefGoogle Scholar
  7. 7.
    Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Katsikis P et al (1993) Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 36(12): 1681–90PubMedCrossRefGoogle Scholar
  8. 8.
    Campion GV, Lebsack ME, Lookabaugh J, Gordon G, Catalano M (1996) Dose-range and dose-frequency study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis. The IL-1Ra Arthritis Study Group. Arthritis Rheum 39(7): 1092–101PubMedCrossRefGoogle Scholar
  9. 9.
    Wendling D, Racadot E, Wijdenes J (1993) Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J Rheumatol 20(2): 259–62PubMedGoogle Scholar
  10. 10.
    Häupl T, Yahyawi M, Lubke C, Ringe J, Rohrlach T, Burmester GR et al (2007) Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen 12(3): 328–40PubMedCrossRefGoogle Scholar
  11. 11.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Moser K, Ortmann WA et al (2004) Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun 5(5): 347–53PubMedCrossRefGoogle Scholar
  12. 12.
    Mahr S, Burmester GR, Hilke D, Gobel U, Grützkau A, Häupl T et al (2006) Cis-and trans-acting gene regulation is associated with osteoarthritis. Am J Hum Genet 78(5): 793–803PubMedCrossRefGoogle Scholar
  13. 13.
    Grützkau A, Grün JR, Häupl T, Burmester GR, Radbruch A (2007) Gene expression in inflammatory rheumatic diseases. Dtsch Med Wochenschr 132(37): 1888–91PubMedCrossRefGoogle Scholar
  14. 14.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 100(5): 2610–5PubMedCrossRefGoogle Scholar
  15. 15.
    Han GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY (2003) Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun 4(3): 177–86PubMedCrossRefGoogle Scholar
  16. 16.
    Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al (2003) Inter-feron and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6): 711–23PubMedCrossRefGoogle Scholar
  17. 17.
    Rus V, Atamas SP, Shustova V, Luzina IG, Selaru F, Magder LS et al (2002) Expression of cytokine-and chemokine-related genes in peripheral blood mononuclear cells from lupus patients by cDNA array. Clin Immunol 102(3): 283–90PubMedCrossRefGoogle Scholar
  18. 18.
    Gu J, Marker-Hermann E, Baeten D, Tsai WC, Gladman D, Xiong M et al (2002) A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloar-thropathy patients. Rheumatology (Oxford) 41(7): 759–66CrossRefGoogle Scholar
  19. 19.
    Bovin LF, Rieneck K, Workman C, Nielsen H, Sorensen SF, Skjodt H et al (2004) Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor. Immunol Lett 93(2-3): 217–26PubMedCrossRefGoogle Scholar
  20. 20.
    Batliwalla FM, Baechler EC, Xiao X, Li W, Balasubramanian S, Khalili H et al (2005) Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun 6(5): 388–97PubMedCrossRefGoogle Scholar
  21. 21.
    Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75(2): 330–7PubMedCrossRefGoogle Scholar
  22. 22.
    Olsen N, Sokka T, Seehorn CL, Kraft B, Maas K, Moore J et al (2004) A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mononuclear cells. Ann Rheum Dis 63(11): 1387–92PubMedCrossRefGoogle Scholar
  23. 23.
    vander Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Rustenburg F, Baggen JM et al (2007) Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis 66(8): 1008–14PubMedCrossRefGoogle Scholar
  24. 24.
    van der Pouw Kraan TC, van Baarsen LG, Wijbrandts CA, Voskuyl AE, Rustenburg F, Baggen JM et al (2008) Expression of a pathogen-response program in peripheral blood cells defines a subgroup of Rheumatoid Arthritis patients. Genes Immun 9(1): 16–22PubMedCrossRefGoogle Scholar
  25. 25.
    Lyons PA (2002) Gene-expression profiling and the genetic dissection of complex disease. Curr Opin Immunol 14(5): 627–30PubMedCrossRefGoogle Scholar
  26. 26.
    Baron U, Floess S, Wieczorek G, Baumann K, Grützkau A, Dong J et al (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol; 37(9): 2378–89PubMedCrossRefGoogle Scholar
  27. 27.
    Lyons PA, Koukoulaki M, Hatton A, Doggett K, Woffendin HB, Chaudhry AN et al (2007) Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification. BMC Genomics 8: 64PubMedCrossRefGoogle Scholar
  28. 28.
    Stuhlmüller B, Ungethum U, Scholze S, Martinez L, Backhaus M, Kraetsch HG et al (2000) Identification of known and novel genes in activated monocytes from patients with rheumatoid arthritis. Arthritis Rheum 43(4): 775–90PubMedCrossRefGoogle Scholar
  29. 29.
    Biesen R, Demir C, Barkhudarova F, Grün JR, Steinbrich-Zöllner M, Backhaus M et al (2008) Siglec1 is a potential biomarker for monitoring disease activity and success of therapy in inflammatory and resident monocyte subsets of SLE patients. Arthritis Rheum 58(4): 1136–1145PubMedCrossRefGoogle Scholar
  30. 30.
    Lindberg J, Klint E, Ulfgren AK, Stark A, Andersson T, Nilsson P et al (2006) Variability in synovial inflammation in rheumatoid arthritis investigated by microarray technology. Arthritis Res Ther 8(2): R47PubMedCrossRefGoogle Scholar
  31. 31.
    van der Pouw Kraan TC, van Gaalen FA, Huizinga TW, Pieterman E, Breedveld FC, Verweij CL (2003) Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun 4(3): 187–96PubMedCrossRefGoogle Scholar
  32. 32.
    van der Pouw Kraan TC, van Gaalen FA, Kasperkovitz PV, Verbeet NL, Smeets TJ, Kraan MC et al (2003) Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum 48(8): 2132–45PubMedCrossRefGoogle Scholar
  33. 33.
    Kasperkovitz PV, Verbeet NL, Smeets TJ, van Rietschoten JG, Kraan MC, van der Pouw Kraan TC et al (2004) Activation of the STAT1 pathway in rheumatoid arthritis. Ann Rheum Dis 63(3): 233–9PubMedCrossRefGoogle Scholar
  34. 34.
    Devauchelle V, Marion S, Cagnard N, Mistou S, Falgarone G, Breban M et al (2004) DNA microarray allows molecular profiling of rheumatoid arthritis and identification of pathophysiological targets. Genes Immun 5(8): 597–608PubMedCrossRefGoogle Scholar
  35. 35.
    Bramlage CP, Häupl T, Kaps C, Ungethum U, Krenn V, Pruss A et al (2006) Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 8(3): R58PubMedCrossRefGoogle Scholar
  36. 36.
    Nzeusseu Toukap A, Galant C, Theate I, Maudoux AL, Lories RJ, Houssiau FA et al (2007) Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum 56(5): 1579–88CrossRefGoogle Scholar
  37. 37.
    Peterson KS, Huang JF, Zhu J, D’Agati V, Liu X, Miller N et al (2004) Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 113(12): 1722–33PubMedGoogle Scholar
  38. 38.
    Häupl T, Grützkau A, Grün J, Kinne R, Berek C, Stuhlmüller B et al (2005) Dominant role of B-cells and monocytes/macrophages in rheumatoid arthritis based on synovial expression profiles. Arthritis Rheum 52(#1084)Google Scholar
  39. 39.
    Häupl T, Grützkau A, Grün J, Baumgrass R, Janitz M, Stuhlmüller B et al (2004) Gene expression profiling in rheumatoid arthritis: unraveling complexity by comparison with profiles from purified leukocytes. Ann Rheum Dis 63(Suppl. 1): 54Google Scholar
  40. 40.
    Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R et al (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52(6): 1824–35PubMedCrossRefGoogle Scholar
  41. 41.
    Nagaraju K, Rider LG, Fan C, Chen YW, Mitsak M, Rawat R et al (2006) Endothelial cell activation and neovascularization are prominent in dermatomyositis. J Autoimmune Dis 3: 2PubMedCrossRefGoogle Scholar
  42. 42.
    Seki T, Selby J, Häupl T, Winchester R (1998) Use of differential subtraction method to identify genes that characterize the phenotype of cultured rheumatoid arthritis synoviocytes. Arthritis Rheum 41(8): 1356–64PubMedCrossRefGoogle Scholar
  43. 43.
    Kasperkovitz PV, Timmer TC, Smeets TJ, Verbeet NL, Tak PP, van Baarsen LG et al (2005) Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum 52(2): 430–41PubMedCrossRefGoogle Scholar
  44. 44.
    Pohlers D, Beyer A, Koczan D, Wilhelm T, Thiesen HJ, Kinne RW (2007) Constitutive upregulation of the transforming growth factor-beta pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 9(3): R59PubMedCrossRefGoogle Scholar
  45. 45.
    Timmer TC, Baltus B, Vondenhoff M, Huizinga TW, Tak PP, Verweij CL et al (2007) Inflammation and ectopic lymphoid structures in rheumatoid arthritis synovial tissues dissected by genomics technology: identification of the interleukin-7 signaling pathway in tissues with lymphoid neogenesis. Arthritis Rheum 56(8): 2492–502PubMedCrossRefGoogle Scholar
  46. 46.
    Weyand CM, Goronzy JJ (2003) Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 987: 140–9PubMedCrossRefGoogle Scholar
  47. 47.
    Muller-Ladner U, Ospelt C, Gay S, Distler O, Pap T (2007) Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res Ther 9(6): 223PubMedCrossRefGoogle Scholar
  48. 48.
    Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U et al (2004) Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 172(2): 1256–65PubMedGoogle Scholar
  49. 49.
    Ogura N, Akutsu M, Tobe M, Sakamaki H, Abiko Y, Kondoh T (2007) Microarray analysis of IL-1beta-stimulated chemokine genes in synovial fibroblasts from human TMJ. J Oral Pathol Med 36(4): 223–8PubMedGoogle Scholar
  50. 50.
    Santangelo KS, Johnson AL, Ruppert AS, Bertone AL (2007) Effects of hyaluronan treatment on lipopolysaccharide-challenged fibroblast-like synovial cells. Arthritis Res Ther 9(1):R1PubMedCrossRefGoogle Scholar
  51. 51.
    Jang J, Lim DS, Choi YE, Jeong Y, Yoo SA, Kim WU et al (2006) mlN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 8(6): R170PubMedCrossRefGoogle Scholar
  52. 52.
    Devauchelle V, Essabbani A, De Pinieux G, Germain S, Tourneur L, Mistou S et al (2006) Characterization and functional consequences of underexpression of clusterin in rheumatoid arthritis. J Immunol 177(9): 6471–9PubMedGoogle Scholar
  53. 53.
    Andreas K, Lubke C, Häupl T, Dehne T, Morawietz L, Ringe J et al (2008) Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther 10(1): R9PubMedCrossRefGoogle Scholar
  54. 54.
    Lequerré T, Gauthier-Jauneau AC, Bansard C, Derambure C, Hiron M, Vittecoq O et al (2006) Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther 8(4): R105PubMedGoogle Scholar
  55. 55.
    Stuhlmüller B, Häupl T, Tandon N, Hernandez M, Hultschig C, Kuban RJ et al (2005) Microarray analysis for molecular characterization of disease activity and measuring outcomes of anti-tumour necrosis factor therapy in rheumatoid arthritis. Arthritis Res Ther 7(Suppl 1):P159CrossRefGoogle Scholar
  56. 56.
    Balanescu A, Radu E, Nat R, Regalia T, Bojinca V, Ionescu R et al (2005) Early and late effect of infliximab on circulating dendritic cells phenotype in rheumatoid arthritis patients. Int J Clin Pharmacol Res 25(1): 9–18PubMedGoogle Scholar
  57. 57.
    Toh ml, Marotte H, Blond JL, Jhumka U, Eljaafari A, Mougin B et al (2006) Overex-pression of synoviolin in peripheral blood and synoviocytes from rheumatoid arthritis patients and continued elevation in nonresponders to infliximab treatment. Arthritis Rheum 54(7): 2109–18PubMedCrossRefGoogle Scholar
  58. 58.
    Lindberg J, af Klint E, Catrina AI, Nilsson P, Klareskog L, Ulfgren AK et al (2006) Effect of infliximab on mRNA expression profiles in synovial tissue of rheumatoid arthritis patients. Arthritis Res Ther 8(6): R179PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Thomas Häupl
    • 1
  • Andreas Grützkau
    • 2
  • Bruno Stuhlmüller
    • 1
  • Karl Skriner
    • 1
  • Gerd Burmester
    • 1
  • Andreas Radbruch
    • 2
  1. 1.Department of Rheumatology and Clinical ImmunologyCharité-University MedicineBerlinGermany
  2. 2.German Arthritis Research Center (DRFZ)BerlinGermany

Personalised recommendations