Skip to main content

Structured Low Rank Approximation of a Sylvester Matrix

  • Conference paper
Symbolic-Numeric Computation

Part of the book series: Trends in Mathematics ((TM))

Abstract

The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms, in our case for matrices with Sylvester structure. We present iterative algorithms that compute an approximate GCD and that can certify an approximate ∈-GCD when a tolerance ∈ is given on input. Each single iteration is carried out with a number of floating point operations that is of cubic order in the input degrees. We also demonstrate the practical performance of our algorithms on a diverse set of univariate pairs of polynomials.

This research was supported in part by the National Science Foundation of the USA under Grants CCR-0305314 and CCF-0514585 (Kaltofen) and OISE-0456285 (Kaltofen, Yang and Zhi), and by NKBRPC (2004CB318000) and the Chinese National Natural Science Foundation under Grant 10401035 (Yang and Zhi).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Anda and H. Park, Fast plane with dynamic scaling, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 162–174.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Beckermann and G. Labahn, When are two polynomials relatively prime? J. Symbolic Comput., 26 (1998), pp. 677–689.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Botting, M. Giesbrecht and J. May, Using Riemannian SVD for problems in approximate algebra, in L. Zhi, eds., Proc. 2005 International Workshop on Symbolic-Numeric Computation, July 2005 Wang and Zhi [29], pp. 209–219. Distributed at the Workshop in Xi’an, China.

    Google Scholar 

  4. M.T. Chu, R.E. Funderlic and R.J. Plemmons, Structured low rank approximation, Linear Algebra and Applications, 366 (2003), pp. 157–172.

    Article  MATH  MathSciNet  Google Scholar 

  5. R.M. Corless, P.M. Gianni, B.M. Trager and S.M. Watt, The singular value decomposition for polynomial systems, in Proc. 1995 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’ 95), A. H. M. Levelt, ed., New York, N. Y., 1995, ACM Press, pp. 96–103.

    Google Scholar 

  6. R.M. Corless, S.M. Watt and L. Zhi, QR factoring to compute the GCD of univariate approximate polynomials, IEEE Transactions on Signal Processing, 52 (2004), pp. 3394–3402.

    Article  MathSciNet  Google Scholar 

  7. I.Z. Emiris, A. Galligo and H. Lombardi, Certified approximate univariate GCDs, J. Pure Applied Algebra, 117 & 118 (1996), pp. 229–251. Special Issue on Algorithms for Algebra.

    MathSciNet  Google Scholar 

  8. S. Gao, E. Kaltofen, J.P. May, Z. Yang and L. Zhi, Approximate factorization of multivariate polynomials via differential equations, in Proc. 2004 Internat. Symp. Symbolic Algebraic Comput. (ISSAC 2004), J. Gutierrez, ed., New York, N. Y., 2004, ACM Press, pp. 167–174.

    Google Scholar 

  9. M.A. Hitz and E. Kaltofen, Efficient algorithms for computing the nearest polynomial with constrained roots, in Proc. 1998 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’ 98), O. Gloor, ed., New York, N. Y., 1998, ACM Press, pp. 236–243.

    Google Scholar 

  10. V. Hribernig and H.J. Stetter, Detection and validation of clusters of polynomials zeros, J. Symbolic Comput., 24 (1997), pp. 667–681.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Kaltofen, Polynomial factorization 1987–1991, in Proc. LATIN’ 92, I. Simon, ed., vol. 583 of Lect. Notes Comput. Sci., Heidelberg, Germany, 1992, Springer Verlag, pp. 294–313.

    Google Scholar 

  12. E. Kaltofen and J. May, On approximate irreducibility of polynomials in several variables, in Proc. 2003 Internat. Symp. Symbolic Algebraic Comput. (ISSAC 2003), J. R. Sendra, ed., New York, N. Y., 2003, ACM Press, pp. 161–168.

    Google Scholar 

  13. E. Kaltofen, Z. Yang and L. Zhi, Structured low rank approximation of a Sylvester matrix, in L. Zhi, eds., Proc. 2005 International Workshop on Symbolic-Numeric Computation, July 2005 Wang and Zhi [29], pp. 188–201. Distributed at the Workshop in Xi’an, China.

    Google Scholar 

  14. E. Kaltofen, Z. Yang and L. Zhi, Structured low rank approximation of a generalized Sylvester matrix, in Proc. of the Seventh Asian Symposium on Computer Mathematics, S. Pae and H. Park, eds., Seoul, South Korea, 2005, Korea Institute for Advanced Study, pp. 219–222. Extended abstract.

    Google Scholar 

  15. E. Kaltofen, Z. Yang and L. Zhi, Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials, in Proc. 2006 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’ 06), J.-G. Dumas, ed., New York, N. Y., 2006, ACM Press, pp. 169–176.

    Google Scholar 

  16. E. Kaltofen, Z. Yang and L. Zhi, Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. Manuscript, 20 pages, Nov. 2006.

    Google Scholar 

  17. N. Karmarkar and Y.N. Lakshman, Approximate polynomial greatest common divisors and nearest singular polynomials, in Proc. 1996 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’ 96), Lakshman Y. N., ed., New York, N. Y., 1996, ACM Press, pp. 35–42.

    Google Scholar 

  18. N.K. Karmarkar and Y.N. Lakshman, On approximate GCDs of univariate polynomials, J. Symbolic Comput., 26 (1998), pp. 653–666. Special issue of the JSC on Symbolic Numeric Algebra for Polynomials, S.M. Watt and H.J. Stetter, editors.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Lemmerling, Structured total least squares: analysis, algorithms and applications, dissertation, Katholieke Universiteit Leuven, Belgium, 1999.

    Google Scholar 

  20. B. Li, Z. Yang, and L. Zhi, Fast low rank approximation of a Sylvester matrix by structured total least norm, J. JSSAC (Japan Society for Symbolic and Algebraic Computation), 11 (2005), pp. 165–174.

    Google Scholar 

  21. M.T. Noda and T. Sasaki, Approximate GCD and its application to ill-conditioned algebraic equations, J. Comput. Appl. Math., 38 (1991), pp. 335–351.

    Article  MATH  MathSciNet  Google Scholar 

  22. V.Y. Pan, Numerical computation of a polynomial GCD and extensions, Information and computation, 167 (2001), pp. 71–85.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Park, L. Zhang and J.B. Rosen, Low rank approximation of a Hankel matrix by structured total least norm, BIT, 39 (1999), pp. 757–779.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.B. Rosen, H. Park and J. Glick, Total least norm formulation and solution for structured problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 110–128.

    Article  MATH  MathSciNet  Google Scholar 

  25. J.B. Rosen, H. Park and J. Glick, Structured total least norm for nonlinear problems, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 14–30.

    Article  MathSciNet  Google Scholar 

  26. M. Sasaki and T. Sasaki, Polynomial remaider sequence and approximate GCD, ACM SIGSAM Bulletin, 31 (2001), pp. 4–10.

    Article  Google Scholar 

  27. A. Schönhage, Quasi-gcd computations, Journal of Complexity, 1 (1985), pp. 118–137.

    Article  MATH  MathSciNet  Google Scholar 

  28. G.W. Stewart, On the asymptotic behavior of scaled singular value and QR decompositions, Mathematics of Computation, 43 (1983), pp. 488–489.

    Google Scholar 

  29. D. Wang and L. Zhi, eds., Proc. 2005 International Workshop on Symbolic-Numeric Computation, July 2005. Distributed at the Workshop in Xi’an, China.

    Google Scholar 

  30. Z. Zeng, The approximate GCD of inexact polynomials. Part I: A univariate algorithm. Manuscript, 2004.

    Google Scholar 

  31. Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comput., 74 (2005), pp. 869–903.

    Article  MATH  Google Scholar 

  32. L. Zhi, Displacement structure in computing approximate GCD of univariate polynomials, in Proc. Sixth Asian Symposium on Computer Mathematics (ASCM 2003), Z. Li and W. Sit, eds., vol. 10 of Lecture Notes Series on Computing, Singapore, 2003, World Scientific, pp. 288–298.

    Google Scholar 

  33. L. Zhi and W. Wu, Nearest singular polynomial, J. Symbolic Comput., 26 (1998), pp. 667–675. Special issue on Symbolic Numeric Algebra for Polynomials, S.M. Watt and H.J. Stetter, editors.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kaltofen, E., Yang, Z., Zhi, L. (2007). Structured Low Rank Approximation of a Sylvester Matrix. In: Wang, D., Zhi, L. (eds) Symbolic-Numeric Computation. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7984-1_5

Download citation

Publish with us

Policies and ethics