Innate immune mechanisms in the resolution of inflammation

  • Andrew Devitt
  • Christopher D. Gregory
Part of the Progress in Inflammation Research book series (PIR)


The inflammatory response is a highly orchestrated and tightly controlled mechanism of defence characterised by infiltration of granulocytes and mononuclear cells. For this response to be beneficial it must deal with its initial inflammatory stimulus and then subside to allow the tissue to return to its pre-inflamed state. Such resolution requires cessation of inflammatory cell recruitment and, importantly, deletion of recruited cells in a safe and controlled fashion. Failure to delete cells appropriately may permit effete cells to undergo necrosis (lysis due to loss of plasma membrane integrity) with the generation of inflammatory and autoimmune consequences associated with leakage of intracellular contents [1].


Apoptotic Cell Innate Immune System Scavenger Receptor Apoptotic Neutrophil Innate Immune Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fadok VA, Bratton DL, Guthrie L, Henson PM (2001) Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol 166: 6847–6854PubMedGoogle Scholar
  2. 2.
    Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54: 1–13PubMedGoogle Scholar
  3. 3.
    Franc NC, White K, Ezekowitz RA (1999) Phagocytosis and development: Back to the future. Curr Opin Immunol 11: 47–52PubMedCrossRefGoogle Scholar
  4. 4.
    Gregory CD (2000) CD14-dependent clearance of apoptotic cells: Relevance to the immune system. Curr Opin Immunol 12: 27–34PubMedCrossRefGoogle Scholar
  5. 5.
    Matzinger P (2002) The danger model: A renewed sense of self. Science 296: 301–305PubMedCrossRefGoogle Scholar
  6. 6.
    Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: An innate immune interaction viewed simplistically? Immunology 113: 1–14PubMedCrossRefGoogle Scholar
  7. 7.
    Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: Clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2: 965–975PubMedCrossRefGoogle Scholar
  8. 8.
    Hart SP, Smith JR, Dransfield I (2004) Phagocytosis of opsonized apoptotic cells: Roles for ‘old-fashioned’ receptors for antibody and complement. Clin Exp Immunol 135: 181–185PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrero E, Goyert SM (1988) Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res 16: 4173PubMedCrossRefGoogle Scholar
  10. 10.
    Simmons DL, Tan S, Tenen DG, Nicholson-Weller A, Seed B (1989) Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood 73: 284–289PubMedGoogle Scholar
  11. 11.
    Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 141: 547–552PubMedGoogle Scholar
  12. 12.
    Gregory CD, Devitt A (2002) Innate immunity and apoptosis: CD14-dependent clearance of apoptotic cells. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Ugolini V, Nunez G, Smith RG, Stastny P, Capra JD (1980) Initial characterization of monoclonal antibodies against human monocytes. Proc Natl Acad Sci USA 77: 6764–6768PubMedCrossRefGoogle Scholar
  14. 14.
    Flora PK, Gregory CD (1994) Recognition of apoptotic cells by human macrophages: Inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur J Immunol 24: 2625–2632PubMedCrossRefGoogle Scholar
  15. 15.
    Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392: 505–509PubMedCrossRefGoogle Scholar
  16. 16.
    Ulevitch RJ, Tobias PS (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437–457PubMedCrossRefGoogle Scholar
  17. 17.
    Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4: 407–414PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrero E, Jiao D, Tsuberi BZ, Tesio L, Rong GW, Haziot A, Goyert SM (1993) Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl Acad Sci USA 90: 2380–2384PubMedCrossRefGoogle Scholar
  19. 19.
    Devitt A, Parker KG, Ogden CA, Oldreive C, Clay MF, Melville LA, Bellamy CO, Lacy-Hulbert A, Gangloff SC, Goyert SM et al (2004) Persistence of apoptotic cells without autoimmune disease or inflammation in CD14-/- mice. J Cell Biol 167: 1161–1170PubMedCrossRefGoogle Scholar
  20. 20.
    Platt N, Suzuki H, Kodama T, Gordon S (2000) Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J Immunol 164: 4861–4867PubMedGoogle Scholar
  21. 21.
    Devitt A, Pierce S, Oldreive C, Shingler WH, Gregory CD (2003) CD14-dependent clearance of apoptotic cells by human macrophages: The role of phosphatidylserine. Cell Death Differ 10: 371–382PubMedCrossRefGoogle Scholar
  22. 22.
    Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90: 1513–1522PubMedCrossRefGoogle Scholar
  23. 23.
    Ren Y, Silverstein RL, Allen J, Savill J (1995) CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181: 1857–1862PubMedCrossRefGoogle Scholar
  24. 24.
    Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170–173PubMedCrossRefGoogle Scholar
  25. 25.
    Oka K, Sawamura T, Kikuta K, Itokawa S, Kume N, Kita T, Masaki T (1998) Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA 95: 9535–9540PubMedCrossRefGoogle Scholar
  26. 26.
    Murphy JE, Tacon D, Tedbury PR, Hadden JM, Knowling S, Sawamura T, Peckham M, Phillips SE, Walker JH, Ponnambalam S (2006) LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochem J 393: 107–115PubMedCrossRefGoogle Scholar
  27. 27.
    Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S (1996) Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 93: 12456–12460PubMedCrossRefGoogle Scholar
  28. 28.
    Terpstra V, Kondratenko N, Steinberg D (1997) Macrophages lacking scavenger receptor A show a decrease in binding and uptake of acetylated low-density lipoprotein and of apoptotic thymocytes, but not of oxidatively damaged red blood cells. Proc Natl Acad Sci USA 94: 8127–8131PubMedCrossRefGoogle Scholar
  29. 29.
    Fukasawa M, Adachi H, Hirota K, Tsujimoto M, Arai H, Inoue K (1996) SRB1, a class B scavenger receptor, recognizes both negatively charged liposomes and apoptotic cells. Exp Cell Res 222: 246–250PubMedCrossRefGoogle Scholar
  30. 30.
    Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D, Quehenberger O (1997) Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem 272: 17551–17557PubMedCrossRefGoogle Scholar
  31. 31.
    Shiratsuchi A, Kawasaki Y, Ikemoto M, Arai H, Nakanishi Y (1999) Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 274: 5901–5908PubMedCrossRefGoogle Scholar
  32. 32.
    Imachi H, Murao K, Hiramine C, Sayo Y, Sato M, Hosokawa H, Ishida T, Kodama T, Quehenberger O, Steinberg D et al (2000) Human scavenger receptor B1 is involved in recognition of apoptotic thymocytes by thymic nurse cells. Lab Invest 80: 263–270PubMedCrossRefGoogle Scholar
  33. 33.
    van den Eijnde SM, Boshart L, Baehrecke EH, De Zeeuw CI, Reutelingsperger CP, Vermeij-Keers C (1998) Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 3: 9–16PubMedCrossRefGoogle Scholar
  34. 34.
    Komohara Y, Terasaki Y, Kaikita K, Suzuki H, Kodama T, Takeya M (2005) Clearance of apoptotic cells is not impaired in mouse embryos deficient in class A scavenger receptor types I and II (CD204). Dev Dyn 232: 67–74PubMedCrossRefGoogle Scholar
  35. 35.
    Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19: 56–59PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor PR, Carugati A, Fadok VA, Cook HT, Andrews M, Carroll MC, Savill JS, Henson PM, Botto M, Walport MJ (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192: 359–366PubMedCrossRefGoogle Scholar
  37. 37.
    Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–795PubMedCrossRefGoogle Scholar
  38. 38.
    Nauta AJ, Trouw LA, Daha MR, Tijsma O, Nieuwland R, Schwaeble WJ, Gingras AR, Mantovani A, Hack EC, Roos A (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32: 1726–1736PubMedCrossRefGoogle Scholar
  39. 39.
    Mevorach D, Mascarenhas JO, Gershov D, Elkon KB (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188: 2313–2320PubMedCrossRefGoogle Scholar
  40. 40.
    Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M (2004) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35: 252–260CrossRefGoogle Scholar
  41. 41.
    Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38: 259–264PubMedCrossRefGoogle Scholar
  42. 42.
    Takizawa F, Tsuji S, Nagasawa S (1996) Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett 397: 269–272PubMedCrossRefGoogle Scholar
  43. 43.
    Peng Y, Kowalewski R, Kim S, Elkon KB (2005) The role of IgM antibodies in the recognition and clearance of apoptotic cells. Mol Immunol 42: 781–787PubMedCrossRefGoogle Scholar
  44. 44.
    Chang MK, Bergmark C, Laurila A, Horkko S, Han KH, Friedman P, Dennis EA, Witztum JL (1999) Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 96: 6353–6358PubMedCrossRefGoogle Scholar
  45. 45.
    Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2002) I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 196: 655–665PubMedCrossRefGoogle Scholar
  46. 46.
    Gershov D, Kim S, Brot N, Elkon KB (2000) C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: Implications for systemic autoimmunity. J Exp Med 192: 1353–1364PubMedCrossRefGoogle Scholar
  47. 47.
    Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124: 915–927PubMedCrossRefGoogle Scholar
  48. 48.
    Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, Walport MJ, Fisher JH, Henson PM, Greene KE (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169: 3978–3986PubMedGoogle Scholar
  49. 49.
    Nepomuceno RR, Ruiz S, Park M, Tenner AJ (1999) C1qRP is a heavily O-glycosylated cell surface protein involved in the regulation of phagocytic activity. J Immunol 162: 3583–3589PubMedGoogle Scholar
  50. 50.
    Norsworthy PJ, Fossati-Jimack L, Cortes-Hernandez J, Taylor PR, Bygrave AE, Thompson RD, Nourshargh S, Walport MJ, Botto M (2004) Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis. J Immunol 172: 3406–3414PubMedGoogle Scholar
  51. 51.
    van de Wetering JK, van Golde LM, Batenburg JJ (2004) Collectins: Players of the innate immune system. Eur J Biochem 271: 1229–1249PubMedCrossRefGoogle Scholar
  52. 52.
    Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T, Chakraborty T (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43: 1293–1315PubMedCrossRefGoogle Scholar
  53. 53.
    Schagat TL, Wofford JA, Wright JR (2001) Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J Immunol 166: 2727–2733PubMedGoogle Scholar
  54. 54.
    Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KB (2002) Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J Immunol 169: 2892–2899PubMedGoogle Scholar
  55. 55.
    Stuart LM, Takahashi K, Shi L, Savill J, Ezekowitz RA (2005) Mannose-binding lectindeficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J Immunol 174: 3220–3226PubMedGoogle Scholar
  56. 56.
    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123: 321–334PubMedCrossRefGoogle Scholar
  57. 57.
    Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM (2003) By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115: 13–23PubMedCrossRefGoogle Scholar
  58. 58.
    Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y (1999) Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J Immunol 163: 387–395PubMedGoogle Scholar
  59. 59.
    Sano H, Chiba H, Iwaki D, Sohma H, Voelker DR, Kuroki Y (2000) Surfactant proteins A and D bind CD14 by different mechanisms. J Biol Chem 275: 22442–22451PubMedCrossRefGoogle Scholar
  60. 60.
    Chiba H, Sano H, Iwaki D, Murakami S, Mitsuzawa H, Takahashi T, Konishi M, Takahashi H, Kuroki Y (2001) Rat mannose-binding protein A binds CD14. Infect Immun 69: 1587–1592PubMedCrossRefGoogle Scholar
  61. 61.
    Fraser DA, Bohlson SS, Jasinskiene N, Rawal N, Palmarini G, Ruiz S, Rochford R, Tenner AJ (2006) C1q and MBL, components of the innate immune system, influence monocyte cytokine expression. J Leukoc Biol 80: 107–116PubMedCrossRefGoogle Scholar
  62. 62.
    Familian A, Zwart B, Huisman HG, Rensink I, Roem D, Hordijk PL, Aarden LA, Hack CE (2001) Chromatin-independent binding of serum amyloid P component to apoptotic cells. J Immunol 167: 647–654PubMedGoogle Scholar
  63. 63.
    Bijl M, Horst G, Bijzet J, Bootsma H, Limburg PC, Kallenberg CG (2003) Serum amyloid P component binds to late apoptotic cells and mediates their uptake by monocytederived macrophages. Arthritis Rheum 48: 248–254PubMedCrossRefGoogle Scholar
  64. 64.
    Rovere P, Peri G, Fazzini F, Bottazzi B, Doni A, Bondanza A, Zimmermann VS, Garlanda C, Fascio U, Sabbadini MG et al (2000) The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood 96: 4300–4306PubMedGoogle Scholar
  65. 65.
    Baruah P, Dumitriu IE, Peri G, Russo V, Mantovani A, Manfredi AA, Rovere-Querini P (2006) The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol 80: 87–95PubMedCrossRefGoogle Scholar
  66. 66.
    van Rossum AP, Fazzini F, Limburg PC, Manfredi AA, Rovere-Querini P, Mantovani A, Kallenberg CG (2004) The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages. Arthritis Rheum 50: 2667–2674PubMedCrossRefGoogle Scholar
  67. 67.
    Jiang HX, Siegel JN, Gewurz H (1991) Binding and complement activation by C-reactive protein via the collagen-like region of C1q and inhibition of these reactions by monoclonal antibodies to C-reactive protein and C1q. J Immunol 146: 2324–2330PubMedGoogle Scholar
  68. 68.
    Nauta AJ, Bottazzi B, Mantovani A, Salvatori G, Kishore U, Schwaeble WJ, Gingras AR, Tzima S, Vivanco F, Egido J et al (2003) Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol 33: 465–473PubMedCrossRefGoogle Scholar
  69. 69.
    Ying SC, Gewurz AT, Jiang H, Gewurz H (1993) Human serum amyloid P component oligomers bind and activate the classical complement pathway via residues 14–26 and 76–92 of the A chain collagen-like region of C1q. J Immunol 150: 169–176PubMedGoogle Scholar
  70. 70.
    Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111: 1805–1812PubMedGoogle Scholar
  71. 71.
    Serhan CN, Savill J (2005) Resolution of inflammation: The beginning programs the end. Nat Immunol 6: 1191–1197PubMedCrossRefGoogle Scholar
  72. 72.
    Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos TW (1995) C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 155: 2185–2193PubMedGoogle Scholar
  73. 73.
    Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW (1999) The major receptor for C-reactive protein on leukocytes is Fcgamma receptor II. J Exp Med 190: 585–590PubMedCrossRefGoogle Scholar
  74. 74.
    Mold C, Baca R, Du Clos TW (2002) Serum amyloid P component and C-reactive protein opsonize apoptotic cells for phagocytosis through Fcgamma receptors. J Autoimmun 19: 147–154PubMedCrossRefGoogle Scholar
  75. 75.
    Truman LA, Ogden CA, Howie SE, Gregory CD (2004) Macrophage chemotaxis to apoptotic Burkitt’s lymphoma cells in vitro: role of CD14 and CD36. Immunobiology 209: 21–30PubMedCrossRefGoogle Scholar
  76. 76.
    Segundo C, Medina F, Rodriguez C, Martinez-Palencia R, Leyva-Cobian F, Brieva JA (1999) Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis. Blood 94: 1012–1020PubMedGoogle Scholar
  77. 77.
    Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717–730PubMedCrossRefGoogle Scholar
  78. 78.
    Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195PubMedCrossRefGoogle Scholar
  79. 79.
    Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5: 825–830PubMedCrossRefGoogle Scholar
  80. 80.
    Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390: 350–351PubMedCrossRefGoogle Scholar
  81. 81.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101: 890–898PubMedCrossRefGoogle Scholar
  82. 82.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35PubMedCrossRefGoogle Scholar
  83. 83.
    Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107: 4930–4937PubMedCrossRefGoogle Scholar
  84. 84.
    Fadok VA, Bratton DL, Henson PM (2001) Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 108: 957–962PubMedGoogle Scholar
  85. 85.
    Shiratsuchi A, Watanabe I, Takeuchi O, Akira S, Nakanishi Y (2004) Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol 172: 2039–2047PubMedGoogle Scholar
  86. 86.
    Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from Toll-like receptors. Science 304: 1014–1018PubMedCrossRefGoogle Scholar
  87. 87.
    Petty HR, Todd RF 3rd (1996) Integrins as promiscuous signal transduction devices. Immunol Today 17: 209–212PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Andrew Devitt
    • 1
  • Christopher D. Gregory
    • 2
  1. 1.School of Life and Health SciencesAston UniversityAston Triangle, BirminghamUK
  2. 2.MRC Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburghUK

Personalised recommendations