Skip to main content

Innate immune mechanisms in the resolution of inflammation

  • Chapter
The Resolution of Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The inflammatory response is a highly orchestrated and tightly controlled mechanism of defence characterised by infiltration of granulocytes and mononuclear cells. For this response to be beneficial it must deal with its initial inflammatory stimulus and then subside to allow the tissue to return to its pre-inflamed state. Such resolution requires cessation of inflammatory cell recruitment and, importantly, deletion of recruited cells in a safe and controlled fashion. Failure to delete cells appropriately may permit effete cells to undergo necrosis (lysis due to loss of plasma membrane integrity) with the generation of inflammatory and autoimmune consequences associated with leakage of intracellular contents [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fadok VA, Bratton DL, Guthrie L, Henson PM (2001) Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol 166: 6847–6854

    PubMed  CAS  Google Scholar 

  2. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54: 1–13

    PubMed  CAS  Google Scholar 

  3. Franc NC, White K, Ezekowitz RA (1999) Phagocytosis and development: Back to the future. Curr Opin Immunol 11: 47–52

    Article  PubMed  CAS  Google Scholar 

  4. Gregory CD (2000) CD14-dependent clearance of apoptotic cells: Relevance to the immune system. Curr Opin Immunol 12: 27–34

    Article  PubMed  CAS  Google Scholar 

  5. Matzinger P (2002) The danger model: A renewed sense of self. Science 296: 301–305

    Article  PubMed  CAS  Google Scholar 

  6. Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: An innate immune interaction viewed simplistically? Immunology 113: 1–14

    Article  PubMed  CAS  Google Scholar 

  7. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: Clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2: 965–975

    Article  PubMed  CAS  Google Scholar 

  8. Hart SP, Smith JR, Dransfield I (2004) Phagocytosis of opsonized apoptotic cells: Roles for ‘old-fashioned’ receptors for antibody and complement. Clin Exp Immunol 135: 181–185

    Article  PubMed  CAS  Google Scholar 

  9. Ferrero E, Goyert SM (1988) Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res 16: 4173

    Article  PubMed  CAS  Google Scholar 

  10. Simmons DL, Tan S, Tenen DG, Nicholson-Weller A, Seed B (1989) Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood 73: 284–289

    PubMed  CAS  Google Scholar 

  11. Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 141: 547–552

    PubMed  CAS  Google Scholar 

  12. Gregory CD, Devitt A (2002) Innate immunity and apoptosis: CD14-dependent clearance of apoptotic cells. Wiley-VCH, Weinheim

    Google Scholar 

  13. Ugolini V, Nunez G, Smith RG, Stastny P, Capra JD (1980) Initial characterization of monoclonal antibodies against human monocytes. Proc Natl Acad Sci USA 77: 6764–6768

    Article  PubMed  CAS  Google Scholar 

  14. Flora PK, Gregory CD (1994) Recognition of apoptotic cells by human macrophages: Inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur J Immunol 24: 2625–2632

    Article  PubMed  CAS  Google Scholar 

  15. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392: 505–509

    Article  PubMed  CAS  Google Scholar 

  16. Ulevitch RJ, Tobias PS (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437–457

    Article  PubMed  CAS  Google Scholar 

  17. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM (1996) Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4: 407–414

    Article  PubMed  CAS  Google Scholar 

  18. Ferrero E, Jiao D, Tsuberi BZ, Tesio L, Rong GW, Haziot A, Goyert SM (1993) Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl Acad Sci USA 90: 2380–2384

    Article  PubMed  CAS  Google Scholar 

  19. Devitt A, Parker KG, Ogden CA, Oldreive C, Clay MF, Melville LA, Bellamy CO, Lacy-Hulbert A, Gangloff SC, Goyert SM et al (2004) Persistence of apoptotic cells without autoimmune disease or inflammation in CD14-/- mice. J Cell Biol 167: 1161–1170

    Article  PubMed  CAS  Google Scholar 

  20. Platt N, Suzuki H, Kodama T, Gordon S (2000) Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J Immunol 164: 4861–4867

    PubMed  CAS  Google Scholar 

  21. Devitt A, Pierce S, Oldreive C, Shingler WH, Gregory CD (2003) CD14-dependent clearance of apoptotic cells by human macrophages: The role of phosphatidylserine. Cell Death Differ 10: 371–382

    Article  PubMed  CAS  Google Scholar 

  22. Savill J, Hogg N, Ren Y, Haslett C (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 90: 1513–1522

    Article  PubMed  CAS  Google Scholar 

  23. Ren Y, Silverstein RL, Allen J, Savill J (1995) CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181: 1857–1862

    Article  PubMed  CAS  Google Scholar 

  24. Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170–173

    Article  PubMed  CAS  Google Scholar 

  25. Oka K, Sawamura T, Kikuta K, Itokawa S, Kume N, Kita T, Masaki T (1998) Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA 95: 9535–9540

    Article  PubMed  CAS  Google Scholar 

  26. Murphy JE, Tacon D, Tedbury PR, Hadden JM, Knowling S, Sawamura T, Peckham M, Phillips SE, Walker JH, Ponnambalam S (2006) LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochem J 393: 107–115

    Article  PubMed  CAS  Google Scholar 

  27. Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S (1996) Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 93: 12456–12460

    Article  PubMed  CAS  Google Scholar 

  28. Terpstra V, Kondratenko N, Steinberg D (1997) Macrophages lacking scavenger receptor A show a decrease in binding and uptake of acetylated low-density lipoprotein and of apoptotic thymocytes, but not of oxidatively damaged red blood cells. Proc Natl Acad Sci USA 94: 8127–8131

    Article  PubMed  CAS  Google Scholar 

  29. Fukasawa M, Adachi H, Hirota K, Tsujimoto M, Arai H, Inoue K (1996) SRB1, a class B scavenger receptor, recognizes both negatively charged liposomes and apoptotic cells. Exp Cell Res 222: 246–250

    Article  PubMed  CAS  Google Scholar 

  30. Murao K, Terpstra V, Green SR, Kondratenko N, Steinberg D, Quehenberger O (1997) Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem 272: 17551–17557

    Article  PubMed  CAS  Google Scholar 

  31. Shiratsuchi A, Kawasaki Y, Ikemoto M, Arai H, Nakanishi Y (1999) Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 274: 5901–5908

    Article  PubMed  CAS  Google Scholar 

  32. Imachi H, Murao K, Hiramine C, Sayo Y, Sato M, Hosokawa H, Ishida T, Kodama T, Quehenberger O, Steinberg D et al (2000) Human scavenger receptor B1 is involved in recognition of apoptotic thymocytes by thymic nurse cells. Lab Invest 80: 263–270

    Article  PubMed  CAS  Google Scholar 

  33. van den Eijnde SM, Boshart L, Baehrecke EH, De Zeeuw CI, Reutelingsperger CP, Vermeij-Keers C (1998) Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 3: 9–16

    Article  PubMed  Google Scholar 

  34. Komohara Y, Terasaki Y, Kaikita K, Suzuki H, Kodama T, Takeya M (2005) Clearance of apoptotic cells is not impaired in mouse embryos deficient in class A scavenger receptor types I and II (CD204). Dev Dyn 232: 67–74

    Article  PubMed  CAS  Google Scholar 

  35. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19: 56–59

    Article  PubMed  CAS  Google Scholar 

  36. Taylor PR, Carugati A, Fadok VA, Cook HT, Andrews M, Carroll MC, Savill JS, Henson PM, Botto M, Walport MJ (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192: 359–366

    Article  PubMed  CAS  Google Scholar 

  37. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–795

    Article  PubMed  CAS  Google Scholar 

  38. Nauta AJ, Trouw LA, Daha MR, Tijsma O, Nieuwland R, Schwaeble WJ, Gingras AR, Mantovani A, Hack EC, Roos A (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32: 1726–1736

    Article  PubMed  CAS  Google Scholar 

  39. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188: 2313–2320

    Article  PubMed  CAS  Google Scholar 

  40. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M (2004) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35: 252–260

    Article  CAS  Google Scholar 

  41. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38: 259–264

    Article  PubMed  CAS  Google Scholar 

  42. Takizawa F, Tsuji S, Nagasawa S (1996) Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett 397: 269–272

    Article  PubMed  CAS  Google Scholar 

  43. Peng Y, Kowalewski R, Kim S, Elkon KB (2005) The role of IgM antibodies in the recognition and clearance of apoptotic cells. Mol Immunol 42: 781–787

    Article  PubMed  CAS  Google Scholar 

  44. Chang MK, Bergmark C, Laurila A, Horkko S, Han KH, Friedman P, Dennis EA, Witztum JL (1999) Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 96: 6353–6358

    Article  PubMed  CAS  Google Scholar 

  45. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB (2002) I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 196: 655–665

    Article  PubMed  CAS  Google Scholar 

  46. Gershov D, Kim S, Brot N, Elkon KB (2000) C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: Implications for systemic autoimmunity. J Exp Med 192: 1353–1364

    Article  PubMed  CAS  Google Scholar 

  47. Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124: 915–927

    Article  PubMed  CAS  Google Scholar 

  48. Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, Walport MJ, Fisher JH, Henson PM, Greene KE (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169: 3978–3986

    PubMed  CAS  Google Scholar 

  49. Nepomuceno RR, Ruiz S, Park M, Tenner AJ (1999) C1qRP is a heavily O-glycosylated cell surface protein involved in the regulation of phagocytic activity. J Immunol 162: 3583–3589

    PubMed  CAS  Google Scholar 

  50. Norsworthy PJ, Fossati-Jimack L, Cortes-Hernandez J, Taylor PR, Bygrave AE, Thompson RD, Nourshargh S, Walport MJ, Botto M (2004) Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis. J Immunol 172: 3406–3414

    PubMed  CAS  Google Scholar 

  51. van de Wetering JK, van Golde LM, Batenburg JJ (2004) Collectins: Players of the innate immune system. Eur J Biochem 271: 1229–1249

    Article  PubMed  CAS  Google Scholar 

  52. Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T, Chakraborty T (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43: 1293–1315

    Article  PubMed  CAS  Google Scholar 

  53. Schagat TL, Wofford JA, Wright JR (2001) Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J Immunol 166: 2727–2733

    PubMed  CAS  Google Scholar 

  54. Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KB (2002) Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J Immunol 169: 2892–2899

    PubMed  CAS  Google Scholar 

  55. Stuart LM, Takahashi K, Shi L, Savill J, Ezekowitz RA (2005) Mannose-binding lectindeficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J Immunol 174: 3220–3226

    PubMed  CAS  Google Scholar 

  56. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123: 321–334

    Article  PubMed  CAS  Google Scholar 

  57. Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM (2003) By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115: 13–23

    Article  PubMed  CAS  Google Scholar 

  58. Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y (1999) Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J Immunol 163: 387–395

    PubMed  CAS  Google Scholar 

  59. Sano H, Chiba H, Iwaki D, Sohma H, Voelker DR, Kuroki Y (2000) Surfactant proteins A and D bind CD14 by different mechanisms. J Biol Chem 275: 22442–22451

    Article  PubMed  CAS  Google Scholar 

  60. Chiba H, Sano H, Iwaki D, Murakami S, Mitsuzawa H, Takahashi T, Konishi M, Takahashi H, Kuroki Y (2001) Rat mannose-binding protein A binds CD14. Infect Immun 69: 1587–1592

    Article  PubMed  CAS  Google Scholar 

  61. Fraser DA, Bohlson SS, Jasinskiene N, Rawal N, Palmarini G, Ruiz S, Rochford R, Tenner AJ (2006) C1q and MBL, components of the innate immune system, influence monocyte cytokine expression. J Leukoc Biol 80: 107–116

    Article  PubMed  CAS  Google Scholar 

  62. Familian A, Zwart B, Huisman HG, Rensink I, Roem D, Hordijk PL, Aarden LA, Hack CE (2001) Chromatin-independent binding of serum amyloid P component to apoptotic cells. J Immunol 167: 647–654

    PubMed  CAS  Google Scholar 

  63. Bijl M, Horst G, Bijzet J, Bootsma H, Limburg PC, Kallenberg CG (2003) Serum amyloid P component binds to late apoptotic cells and mediates their uptake by monocytederived macrophages. Arthritis Rheum 48: 248–254

    Article  PubMed  CAS  Google Scholar 

  64. Rovere P, Peri G, Fazzini F, Bottazzi B, Doni A, Bondanza A, Zimmermann VS, Garlanda C, Fascio U, Sabbadini MG et al (2000) The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood 96: 4300–4306

    PubMed  CAS  Google Scholar 

  65. Baruah P, Dumitriu IE, Peri G, Russo V, Mantovani A, Manfredi AA, Rovere-Querini P (2006) The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol 80: 87–95

    Article  PubMed  CAS  Google Scholar 

  66. van Rossum AP, Fazzini F, Limburg PC, Manfredi AA, Rovere-Querini P, Mantovani A, Kallenberg CG (2004) The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages. Arthritis Rheum 50: 2667–2674

    Article  PubMed  CAS  Google Scholar 

  67. Jiang HX, Siegel JN, Gewurz H (1991) Binding and complement activation by C-reactive protein via the collagen-like region of C1q and inhibition of these reactions by monoclonal antibodies to C-reactive protein and C1q. J Immunol 146: 2324–2330

    PubMed  CAS  Google Scholar 

  68. Nauta AJ, Bottazzi B, Mantovani A, Salvatori G, Kishore U, Schwaeble WJ, Gingras AR, Tzima S, Vivanco F, Egido J et al (2003) Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol 33: 465–473

    Article  PubMed  CAS  Google Scholar 

  69. Ying SC, Gewurz AT, Jiang H, Gewurz H (1993) Human serum amyloid P component oligomers bind and activate the classical complement pathway via residues 14–26 and 76–92 of the A chain collagen-like region of C1q. J Immunol 150: 169–176

    PubMed  CAS  Google Scholar 

  70. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111: 1805–1812

    PubMed  CAS  Google Scholar 

  71. Serhan CN, Savill J (2005) Resolution of inflammation: The beginning programs the end. Nat Immunol 6: 1191–1197

    Article  PubMed  CAS  Google Scholar 

  72. Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos TW (1995) C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 155: 2185–2193

    PubMed  CAS  Google Scholar 

  73. Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW (1999) The major receptor for C-reactive protein on leukocytes is Fcgamma receptor II. J Exp Med 190: 585–590

    Article  PubMed  CAS  Google Scholar 

  74. Mold C, Baca R, Du Clos TW (2002) Serum amyloid P component and C-reactive protein opsonize apoptotic cells for phagocytosis through Fcgamma receptors. J Autoimmun 19: 147–154

    Article  PubMed  Google Scholar 

  75. Truman LA, Ogden CA, Howie SE, Gregory CD (2004) Macrophage chemotaxis to apoptotic Burkitt’s lymphoma cells in vitro: role of CD14 and CD36. Immunobiology 209: 21–30

    Article  PubMed  CAS  Google Scholar 

  76. Segundo C, Medina F, Rodriguez C, Martinez-Palencia R, Leyva-Cobian F, Brieva JA (1999) Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis. Blood 94: 1012–1020

    PubMed  CAS  Google Scholar 

  77. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717–730

    Article  PubMed  CAS  Google Scholar 

  78. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195

    Article  PubMed  CAS  Google Scholar 

  79. Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5: 825–830

    Article  PubMed  CAS  Google Scholar 

  80. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390: 350–351

    Article  PubMed  CAS  Google Scholar 

  81. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101: 890–898

    Article  PubMed  CAS  Google Scholar 

  82. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35

    Article  PubMed  CAS  Google Scholar 

  83. Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107: 4930–4937

    Article  PubMed  CAS  Google Scholar 

  84. Fadok VA, Bratton DL, Henson PM (2001) Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 108: 957–962

    PubMed  CAS  Google Scholar 

  85. Shiratsuchi A, Watanabe I, Takeuchi O, Akira S, Nakanishi Y (2004) Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol 172: 2039–2047

    PubMed  CAS  Google Scholar 

  86. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from Toll-like receptors. Science 304: 1014–1018

    Article  PubMed  CAS  Google Scholar 

  87. Petty HR, Todd RF 3rd (1996) Integrins as promiscuous signal transduction devices. Immunol Today 17: 209–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Devitt, A., Gregory, C.D. (2008). Innate immune mechanisms in the resolution of inflammation. In: Rossi, A.G., Sawatzky, D.A. (eds) The Resolution of Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7506-5_3

Download citation

Publish with us

Policies and ethics