Skip to main content

Neurochemical investigations in patients with dementia of Alzheimer type and their clinical value

  • Conference paper
New Trends in the Diagnosis and Therapy of Alzheimer’s Disease

Summary

The clinical diagnosis of dementia of Alzheimer type (DAT) relies on the identification of a dementia syndrome in the absence of other known etiologies, which results in a diagnostic validity of approximately 90 percent. Thus, the identification of a biological ante-mortem marker of DAT would be of great help. Investigations on post-mortem tissue have established several cascades of cell biological events in the affected brain, e.g. cholinergic degeneration, free oxygen radical toxicity, impairment of glucose metabolism, which we used as a rationale for testing the diagnosis utility of related parameters in DAT patients. Acetylcholine (ACh) and choline, and vitamin E in the CSF as well as neuroendocrine changes after a GHRH/CRH challenge and hormonal changes after an oral glucose tolerance in DAT patients were measured. For ACh concentration in CSF and neuroendocrine changes after GHRH as well as insulin release after OGTT, there were subtle changes from controls. The potential use of these parameters as diagnostic markers of Alzheimer’s disease in the alive patient is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams Jr JD, Klaidman LK, Odunze IN, Shen HC, Miller CA (1991) Alzheimer’s and Parkinson’s disease — brain levels of glutathione, glutathione disulfide, and Vitamin E. Mol Chem Neuropathol 14:213–226.

    Article  PubMed  CAS  Google Scholar 

  • Adem A, Nordberg, A, Bucht, G, Winblad B (1986) Extraneuronal cholinergic markers in Alzheimer’s and Parkinson’s disease. Prog Neurosycho-pharmocol Biol Psychiatry 10:247–257.

    Article  CAS  Google Scholar 

  • Aharon-Peretz J, Harel T, Revach M, Ben-Haim SA (1992) Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer’s disease. Arch Neurol 49:919–922.

    Article  PubMed  CAS  Google Scholar 

  • Alom J, Galard R, Catalan R, Castellanos JM, Schwartz S, Tolosa E (1990) Cerebrospinal fluid neuropeptide Y in Alzheimer’s disease. Eur Neurol 30:207–210.

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol 61:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Blessed G, Fairbairn A (1983) Molecular forms of acetylcholinesterase in senile dementia of ALzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Blass JP (1993a) Pathophysiology of the Alzheimer’s syndrome. Neurology 43[Suppl 4]:25–38.

    Google Scholar 

  • Blass JP (1993b) Metabolic alterations common to neural and non-neural cells in Alzheimer’s disease. Hippocampus 3:45–54.

    PubMed  Google Scholar 

  • Blass JP, Sheu RK, Cedarbaum JM (1988) Energy metabolism in disorders of the nervous system. Rev Neurol (Paris) 144:543–563.

    CAS  Google Scholar 

  • Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114:797–811.

    Article  PubMed  CAS  Google Scholar 

  • Bucht G, Adolfsson R, Lithner F, Winblad B (1983) Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand 213:387–392.

    Article  PubMed  CAS  Google Scholar 

  • Cutler NR (1988) Utility of biological markers in the evaluation and diagnosis of Alzheimer’s disease. Brain Dysfunct 1:12–31.

    Google Scholar 

  • DeKosky St T, Scheff St W, Hackney CG (1989) Acetylcholine synthesis in human CSF: implications for study of central cholinergic metabolism. Neurochem Res 14:191–196.

    Article  PubMed  CAS  Google Scholar 

  • Elble R, Giacobini E, Higgins C (1989) Choline levels are increased in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging 10:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Foley P, Bradford HF, Docherty M, Fillit H, Luine VN, McEwen B, Bucht G, Winblad B, Hardy J (1988) Evidence for the presence of antibodies to cholinergic neurons in the serum of patients with Alzheimer’s disease. J Neurol 235:466–471.

    Article  PubMed  CAS  Google Scholar 

  • Friedland RP (1993) Alzheimer’s disease: clinical features and differential diagnosis. Neurology 43[Suppl 4]:45–51.

    Google Scholar 

  • Friedland RP, Brun A, Budinger TF (1985) Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet i:228.

    Article  Google Scholar 

  • Frölich L, Eilles C, Ihl R, Maurer K, Lanczik M (1989) Stage-dependent reductions of regional cerebral blood flow measured by HMPAO-SPECT in dementia of Alzheimer type. Psychiatry Res 29:347–350.

    Article  Google Scholar 

  • Frölich L, Kornhuber J, Ihl R, Fritze J, Maurer K, Riederer P (1991) Integrity of the blood-CSF barrier in dementia of Alzheimer type: CSF/serum ratios of albumin and IgG. Eur Arch Psychiatry Clin Neurosci 240:363–366.

    Article  PubMed  Google Scholar 

  • Fujisawa Y, Sasaki K, Akiyama K (1991) Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry 30:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  • Götz ME, Freyberger A, Riederer P (1990) Oxidative stress: a role in the pathogenesis of Parkinson’s disease. J Neural Transm [Suppl 29]:241–249.

    Google Scholar 

  • Gsell W, Moll G, Sofic E, Riederer P (1993) Cholinergic and monoaminergic neurotransmitter system in patients with Alzheimer’s disease and senile dementia of the Alzheimer type: a critical evaluation. In: Maurer K (ed) Dementias, neurochemistry, neuropathology, neuroimaging, neurpsychology and genetics. Vieweg, Braunschweig, pp 25–51.

    Google Scholar 

  • Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H, Riederer P (1994) Decrease in catalase activity and inducibility of Superoxide dismutase activity in brains of patients with senile dementia of Alzheimer type. Neurochem (in press).

    Google Scholar 

  • Hachinski V, Iliff LD, Zilkha E, et al (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, Mohs RC, Davis KL (1986) Antemortem markers of Alzheimer’s disease. Neurobiol Aging 7: 367–387.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235:143–148.

    Article  PubMed  CAS  Google Scholar 

  • Ihl R, Frölich L, Dierks T, Martin E, Maurer K (1992) Differential validity of psychometric tests in dementia of the Alzheimer type. Psychiatry Res 44:93–106.

    Article  PubMed  CAS  Google Scholar 

  • Jobst KA, Smith AD, Szatmari M, Molyneux A, Esiri ME, King E, Jaskowski A, McDonald B, Wald N (1992) Detection in life of confirmed Alzheimer’s disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 340:1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, Anslow PA, Molyneux AJ, Shepstone BJ, Soper N, Holmes KA, Robinson JR, Hope RA, Oppenheimer C, Brockbank K, McDonald B (1992) Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 55:190–194.

    Article  PubMed  CAS  Google Scholar 

  • Kaye JA, May C, Atack JR, Daly E, Sweeney DL, Beal MF, Kaufman S, Milstien S, Friedland RP, Rapoport SI (1988) Cerebrospinal fluid neurochemistry in the myoclonic subtype of Alzheimer’s disease. Ann Neurol 24:647–650.

    Article  PubMed  CAS  Google Scholar 

  • Kesslak JP, Nalcioglu O, Cotman CW (1991) Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41:51–54.

    PubMed  CAS  Google Scholar 

  • Kilander L, Boberg M, Lithell H (1992) Peripheral glucose metabolism and insulin sensitivity in Alzheimer’s disease (poster, unpublished).

    Google Scholar 

  • Kristensen E, Jakobsen J, Bartels U, Vestergaard P (1989) Cholinergic dysfunction of heart, pupil, salivary glands, and urinary bladder in healthy volunteers during long-term treatment with clomipramine. Psychopharmacology 98:398–402.

    Article  PubMed  CAS  Google Scholar 

  • Kukull WA, Larson EB, Reifler BV, Lampe TH, Yerby MS, Hughes JP (1990) The validity of 3 clinical diagnostic criteria for Alzheimer’s disease. Neurology 40:1364–1369.

    PubMed  CAS  Google Scholar 

  • Kumar V, Giacobini E, Markwell S (1989) CSF choline and acetylcholinesterase in early-onset vs. late-onset Alzheimer’s disease patients. Acta Neurol Scand 80:461–466.

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Rupprecht R (1990) Psychoneuroendocrine research in depression. II. Hormone responses to releasing hormones as a probe for hypothalamic-pituitary-endorgan dysfunction. J Neural Transm 75:179–194.

    Article  Google Scholar 

  • Lesch KP, Ihl R, Frölich L, Rupprecht R, Müller U, Schulte H-M, Maurer K (1990) Endocrine responses to growth hormone releasing hormone and corticotriopin releasing hormone in early-onset Alzheimer’s disease. Psychiatry Res 33:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Togashi H, Yoshioka M, Morii K, Hirokami M, Tochihara M, Ikeda T, Saito Y, Saito H (1991) Significant correlations between cerebrospinal fluid and brain levels of norepindephrine, serotonin and acetylcho-line in anesthetized rats. Life Sci 48:823–829.

    Article  PubMed  CAS  Google Scholar 

  • Maurer K, Ihl R, Frölich L (1993) Alzheimer. Springer, Berlin Heidelberg New York Tokyo.

    Book  Google Scholar 

  • McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T (1984) Aging, Alzheimer’s disease and the cholinergic system of the basal forebrain. Neurology 34:741–745.

    PubMed  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944.

    PubMed  CAS  Google Scholar 

  • Metcalfe T, Bowen DM, Muller DPR (1989) Vitamine E concentrations in human brain of patients with Alzheimer’s disease, fetuses with Down’s syndrome, centenarians and controls. Neurochem Res 14:1209–1212.

    Article  PubMed  CAS  Google Scholar 

  • Navaratnam DS, Priddle JD, McDonald B, Esiri MM, Robbinson JR, Smith AD (1991) Anomalous molecular form of acetylcholinesterase in cerebrospinal fluid in histologically diagnosed Alzheimer’s disease. Lancet 337:447–449.

    Article  PubMed  CAS  Google Scholar 

  • Okuyama S, Ikeda Y (1988) Determination of acetylcholine and choline in human cerebrospinal fluid using high-performance liquid chromatography combined with an immobilized enzyme reactor: ageing-induced change of acetylcholine level. J Chromatogr 431:389–394.

    Article  PubMed  CAS  Google Scholar 

  • Pearlson GD, Harris GJ, Power RE, Barta PE, Camargo E, Chase GA, Noga JT, Tune LE (1992) Quantitative changes in mesial temporal volume, regional cerebral blood flow and cognition in Alzheimer’s disease. Arch Gen Psychiatry 49:402–408.

    Article  PubMed  CAS  Google Scholar 

  • Pomara N, Singh R, Deptula D, LeWitt PA, Bissette G, Stanley M, Nemeroff CB (1989) CSF Corticotrophin-Releasing Factor (CRF) in Alzheimer’s disease: its relationship to seventy of dementia and monoamine metabolites. Biol Psychiatry 26:500–504.

    Article  PubMed  CAS  Google Scholar 

  • Raskind MA, Peskind ER, Veith RC, Risse St C, Lampe TH, Borson S, Gumbrecht G, Dorsa DM (1989) Neuroendocrine responses to physostigmine in Alzheimer’s disease. Arch Gen Psychiatry 46:535–540.

    Article  PubMed  CAS  Google Scholar 

  • Reed BR, Jagust WJ, Seab Ph, Ober BA (1989) Memory and regional cerebral blood flow in mildly symptomatic Alzheimer’s disease. Neurology 39:1537–1539.

    PubMed  CAS  Google Scholar 

  • Schapiro MB, Atack JR, Hanin I, Max C, Haxby JV, Rapoport St I (1990) Lumbar cerebrospinal fluid choline in healthy aging and in Down’s syndrome. Arch Neurol 47:977–980.

    Article  PubMed  CAS  Google Scholar 

  • Shen ZX, Ding Q, Wei CZ, Ding MC, Meng JM (1993) CSF Cholinesterase in early-onset and late-onset Alzheimer’s disease and multi-infarct dementia of Chinese patients. Acta Neurol Scand 87:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Finegan JM, Blass JP, Bowen DM, Neary D (1989) Mitochondrial function in brain tissue in primary degenerative dementias. Brain Res 436:30–38.

    Article  Google Scholar 

  • Stadler H, Nesslhut T (1986) Simple and rapid measurement of acetylcholine and choline by HPLC and electrochemical detection. Neurochem Int 9:127–129.

    Article  PubMed  CAS  Google Scholar 

  • Teelken AW, Schuring HF, Trieling WB, Damsma G (1991) Measurement of acetylcholine and choline in cerebrospinal fluid by means of HPLC (poster, unpublished).

    Google Scholar 

  • Vatassery GT, Smith WE (1987) Detection of alpha-tocopherol quinone (vitamin E quinone) in human serum, platelets and red cell membrane samples. Anal Biochem 167:411–417.

    Article  PubMed  CAS  Google Scholar 

  • Vatasseiy GT, Nelson MJ, Maletta GJ, Kuskowski MA (1991) Vitamin E (tocopherols) in human cerebrospinal fluid. Am J Clin Nutr 53:95–99.

    Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative disease? Science 256:628–632.

    Article  PubMed  CAS  Google Scholar 

  • Winograd C-H, Jacobson D, Minkoff J-R, Peabody C-A, Taylor B-S, Widirow L, Yesavage J-A (1991) Blood glucose and insulin response in patients with senile dementia of the Alzheimer’s type. Biol Psychiatry 30:507–511.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag/Wien

About this paper

Cite this paper

Frölich, L. et al. (1994). Neurochemical investigations in patients with dementia of Alzheimer type and their clinical value. In: Jellinger, K.A., Ladurner, G., Windisch, M. (eds) New Trends in the Diagnosis and Therapy of Alzheimer’s Disease. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9376-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9376-1_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82620-1

  • Online ISBN: 978-3-7091-9376-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics