Skip to main content

Computed tomography and magnetic resonance imaging in the diagnosis of Alzheimer’s disease

  • Conference paper
New Trends in the Diagnosis and Therapy of Alzheimer’s Disease

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

Both cranial computerized tomography (CCT) and magnetic resonance tomography (MRT) are important tools in the clinical diagnosis of Alzheimer’s disease. Volumetric CCT assessment and MRT analysis of brain, ventricular and intracavity volumes are mandatory for monitoring the progression of the disease, and have been highly standardized. Temporal lobe volume measurement by CCT and, in particular, by MRT, are useful for early diagnosis of AD and prospective studies of at risk populations. Both measurement of gray matter loss and white matter abnormalities give useful results, although the interpretation of white matter lesions in aged subjects may be difficult. MR spectroscopy, demonstrating significant chemical changes in aging brain and in AD subjects, suggests changes of phospholipid cell membranes in gray and white matter in AD and may be helpful in distinguishing AD from multiple infarctions. The specificity and sensitivity of recently developed MR spectroscopy tests remain to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aichner F (1993) Clinical value of magnetic resonance imaging in the diagnosis of demential diseases. Psychiat Danub 5:177–187.

    Google Scholar 

  • Aichner F, Felber S, Willeit J (1988) Magnetic resonance imaging and computed tomography in diagnosis and assessment of dementia. In: Agnoli P, Cahn J, Lassen N, Mayeux R (eds) Senile dementia. Libbey, Paris, pp 213–217.

    Google Scholar 

  • Albert M, Naeser MA, Levine HL, Garvey AJ (1984) Ventricular size in patients with presenile dementia of Alzheimer type. Arch Neurol 41:1258–1263.

    Article  PubMed  CAS  Google Scholar 

  • Birbamer G, Felber S, Kampfl A, Aichner F, Gerstenbrand F, Benesch H (1993) Fast magnetic resonance imaging and 3D volumetric calculations in degenerative central nervous system diseases. In: Maurer K (ed) Imaging of the brain in psychiatry and related fields. Springer, Berlin Heidelberg New York Tokyo, pp 47–51.

    Chapter  Google Scholar 

  • Bottomley PA, Cousins JP, Pendrey DL, Wagle WA, Hardy CJ, Eames FA, McCaffrey RJ, Thompson DA (1992) Alzheimer dementia: quantification of energy metabolism and mobile phosphoesters with P31 NMR spectroscopy. Radiology 183:695–699.

    PubMed  CAS  Google Scholar 

  • Bowen BC, Barker WW, Loewenstein DA, Sheldon J, Duara R (1990) MR signal abnormalities in memory disorders and dementia. AJNR 11:283–290.

    PubMed  CAS  Google Scholar 

  • Braffman BH, Zimmerman RA, Trojanowski J, Gonatas NK, Hickey WF, Schlaepfer W, Brain MR (1988) Pathologic correlation with gross and histopathology. 2. Hyperintense white matter foci in the elderly. AJNR 9:629–636.

    Google Scholar 

  • Brown GG, Levine SR, Gorell JM, Pettegrew JW, Gdowski JW, Bueri JA, Helpern JA, Welch KMA (1989) In vivo 31 P NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia. Neurology 39:1423–1427.

    PubMed  CAS  Google Scholar 

  • Brun A, Englund E (1985) Alzheimer type dementia and white matter changes. Acta Neurol Scand 7:87–88.

    Google Scholar 

  • Condon B, Grant R, Hadly D, Lawrence A (1988) Brain and intracranial cavity volumes: in vivo determination by MRI. Acta Neurol Scand 78:387–393.

    Article  PubMed  CAS  Google Scholar 

  • Creasey H, Schwartz M, Frederickson H, Haxby JV, Rapoport SI (1986) Quantitative computed tomography in dementia of Alzheimer type. Neurology 36:1563–1568.

    PubMed  CAS  Google Scholar 

  • Dahlbeck SW, McCluney KW, Yeakley JW, Fenstermacher MJ, Bonmati C, Gage van Horn M (1991) The interuncal distance: a new MR measurement for the hippocampal atrophy of Alzheimer disease. AJNR 12:930–932.

    Google Scholar 

  • De Carli C, Maisog J, Murphy DGM, Teichberg D, Rapoport SI, Horwith B (1992) Method for quantification of brain, ventricular and subarachnoid CSF volumes from MR images. J Comput Assist Tomogr 16:274–284.

    Article  Google Scholar 

  • De la Monte SM (1989) Quantification of cerebral atrophy in preclinical and end-stage Alzheimer’s disease. Ann Neurol 25:450–459.

    Article  PubMed  Google Scholar 

  • Doraiswamy PM, McDonald WM, Patterson L, Husain MM, Figiel GS, Boyko OB, Krishnan KR (1993) Interuncal distance as a measure of hippocampal atrophy: normative data on axial MR imaging. AJNR 14:141–143.

    PubMed  CAS  Google Scholar 

  • Early B, Escalowa PR, Boyko OB, Doraiswamy PM, Axelson DA, Patterson L, McDonald WM, Krishnan KRR (1993) Interuncal distance measurements in healthy volunteers and in patients with Alzheimer disease. AJNR 14:907–910.

    PubMed  CAS  Google Scholar 

  • Erkinjuntti T, Ketonen L, Sulkava R, Sipponen J, Vuorialho M, Iivanainen M (1987) Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer’s disease. J Neurol Neurosurg Psychiatry 50:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Fazekas F, Niederkorn K, Schmidt R, Offenbacher H, Horner S, Bertha G, Lechner H (1988) White matter signal abnormalities in normal individuals. Correlation with carotid ultrasonography, cerebral blood flow measurements and cerebrovascular risk factors. Stroke 19:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  • Fazekas F, Chawluk JB, Alavi B, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s disease dementia and normal aging. AJNR 149:351–356.

    CAS  Google Scholar 

  • Felber S, Birbamer G, Benesch H, Aichner F, Ehrike H (1990) Isotropie 3D-MR-imaging applied to degenerative disorders of the brain. In: Schneider GH, et al (eds) Digitale Bildgebung, interventioneile Radiologie, integrierte digitale Radiologie. Blackwell Ueberreuter, Cambridge, pp 282–285.

    Google Scholar 

  • Frackowiak RSJ (1986) Brain imaging in the assessment of the dementias. In: Poeck K, Freund HJ, Gänshirt H (eds) Neurology. Springer, Berlin Heidelberg New York Tokyo, pp 50–60.

    Chapter  Google Scholar 

  • Gado M, Hughes CP, Danziger W, Chi D (1983) Aging, dementia and brain atrophy: a longitudinal computed tomographic study. AJNR 4:699–702.

    PubMed  CAS  Google Scholar 

  • George AE, De Leon MJ, Stylopoulus LA, Miller J, Klinger A, Smith G, Miller DC (1990) CT diagnostic features of Alzheimer disease: importance of the chloroidal-hippocampal fissure complex. AJNR 11:101–107.

    PubMed  CAS  Google Scholar 

  • Grafton ST, Sumi SM, Stimac GK, Alvord EC, Shaw Cerebrolysin, Nochlin D (1991) Comparison of post mortem magnetic resonance imaging and neuropathologic findings in the cerebral white matter. Arch Neurol 48:293–298.

    Article  PubMed  CAS  Google Scholar 

  • Harrell LE, Duvall E, Folks DG, Duke L, Bartolucci A, Conbow T, Callaway R, Kerns D (1991) The relationship of high-intensity signals on magnetic resonance images to cognitive and psychiatric state in Alzheimer’s disease. Arch Neurol 48:1136–1140.

    Article  PubMed  CAS  Google Scholar 

  • Hendrie HC, Farlow MR, Austrom MG, Edwards MK, Williams MA (1989) Foci of increased T2 signal intensity on brain MR scans of healthy elderly subjects. AJNR 10:703–707.

    PubMed  CAS  Google Scholar 

  • Hubbard BM, Anderson JM (1981) A quantitative study of cerebral atrophy in old age and senile dementia. J Neurol Sci 50:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Bentley MD, Twomey CR, Zinsmeister AR (1990) MR-imaging based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 176:205–209.

    PubMed  Google Scholar 

  • Jack CR Jr, Gehring DG, Sharbrough FW, Felmlee JO, Forbes G, Hench VS, Zinsmeister AR (1988) Temporal lobe volume measurement from MR images: accuracy and left-right asymmetry in normal persons. J Comput Assist Tomogr 12:21–29.

    Article  PubMed  Google Scholar 

  • Jack CR, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188.

    PubMed  Google Scholar 

  • Jernigan TL, Press GA, Hesselink JR (1990) Methods for measuring brain morphologic features on magnetic resonance images: validation and normal ageing. Arch Neurol 47:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Kesslak JP, Nalcioglu O, Cotman CW (1991) Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41:51–54.

    PubMed  CAS  Google Scholar 

  • Kido DK, Caine ED, Lemay M, Ekham S, Booth H, Panzer R (1989) Temporal lobe atrophy in patients with Alzheimer disease: a CT study. AJNR 10:551–555.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick JB, Hayman LA (1987) White matter lesions in MR imaging of clinically healthy brains of elderly subjects: possible pathologic basis. Radiology 162:509–511.

    PubMed  CAS  Google Scholar 

  • Klunk WE, Panchalingam K, Moossy J, McClure RJ, Pettegrew JW (1992) N-acetyl-L-aspartate and other aminoacid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42:1578–1585.

    PubMed  CAS  Google Scholar 

  • Kobari M, Meyer JS, Ichijo M, Oravez WT (1990) Leukoaraiosis: correlation of MR and CT findings with blood flow, atrophy and cognition. AJNR 11:273–281.

    PubMed  CAS  Google Scholar 

  • Kohn MI, Tanna NK, Herman GT, Resnick SM, Mozley PD, Gur RE, Alavi A, Zimmerman RA, Gur RC (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging, part I. Methods, reliability and validation. Radiology 178:115–122.

    PubMed  CAS  Google Scholar 

  • Leifer D, Buonanno FS, Richardson EP (1990) Clinicopathologic correlations of cranial magnetic resonance imaging of periventricular white matter. Neurology 40:911–918.

    PubMed  CAS  Google Scholar 

  • Leys D, Soetaert G, Petit H, Fauquette A, Pruvo JP, Steiling M (1990) Periventricular and white matter magnetic resonance imaging hyperintensities do not differ between Alzheimer’s disease and normal ageing. Arch Neurol 47:524–527.

    Article  PubMed  CAS  Google Scholar 

  • Lim KO, Pfefferbaum A (1989) Segmentation of MR brain images to cerebrospinal fluid spaces, white and gray matter. J Comput Assist Tomogr 13:588–593.

    Article  PubMed  CAS  Google Scholar 

  • Liu CK, Miller BL, Cummings JL, Mehringer CM, Goldberg MA, Howng SL, Benson DF (1989) A quantitative MRI study of vascular dementia. Neurology 42:138–143.

    Google Scholar 

  • Lopez OL, Becker JL, Rezek D, Wess J, Boiler F, Reynolds III CF, Panisset M (1992) Neuropsychiatric correlates of cerebral white-matter radiolucencies in probable Alzheimer’s disease. Arch Neurol 49:828–834.

    Article  PubMed  CAS  Google Scholar 

  • Malko JA, Hoffman JC Jr, Green RC (1991) MR measurement of intracranial CSF volume in 41 elderly normal volunteers. AJNR 12:371–374.

    PubMed  CAS  Google Scholar 

  • Marsden CD, Harrison MJG (1972) Outcome of investigation of patients with presenile dementia. Br Med J 2:249–252.

    Article  PubMed  CAS  Google Scholar 

  • Marshall VG, Bradley WG, Marshall CE, Bhoopat T, Rhodes RH (1988) Deep white matter infarction: correlation of MR imaging and histopathologic findings. Radiology 167:517–522.

    PubMed  CAS  Google Scholar 

  • Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 187:433–437.

    PubMed  CAS  Google Scholar 

  • Mirsen TR, Lee DH, Wong CJ, Diaz F, Fox AJ, Hachinski VC, Merskey H (1991) Clinical correlates of white matter changes on magnetic resonance imaging scans of the brain. Arch Neurol 48:1015–1021.

    Article  PubMed  CAS  Google Scholar 

  • Ogata J, Feigin I (1973) The relative weight of the gray and white matter of the normal human brain. J Neuropathol Exp Neurol 32:585–588.

    Article  PubMed  CAS  Google Scholar 

  • Penn RD, Belanger MG, Yassnoff WA (1978) Ventricular volume in man computed from CT scans. Ann Neurol 3:223–316.

    Article  Google Scholar 

  • Pettegrew JW, Panchalingam K, Moossy J, Martinez J, Rao G, Boiler F (1988) Correlation of phosphorous-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer’s disease. Arch Neurol 45:1093–1096.

    Article  PubMed  CAS  Google Scholar 

  • Rezek DL, Morris J, Fulling KH, Gado MH (1987) Periventricular white matter lucencies in senile dementia of Alzheimer type and in normal ageing. Neurology 37:1365–1368.

    PubMed  CAS  Google Scholar 

  • Ron MA, Toone BK, Garralda ME, Lishman WA (1979) Diagnostic accuracy in presenile dementia. Br J Psychiatry 136:161–168.

    Article  Google Scholar 

  • Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A (1980) Pathological verification of ischemia score in differentiation of dementia. Ann Neurol 7:486–488.

    Article  PubMed  CAS  Google Scholar 

  • Rusinek H, De Leon JM, George AE, Stylopoulos LA, Chandra R, Smith G, Rand T, Maurino M, Kowalski H (1991) Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178:109–114.

    PubMed  CAS  Google Scholar 

  • Sandor T, Albert M, Stafford J, Harpley S (1988) Use of computerized CT analysis to discriminate between Alzheimer patients and normal control subjects. AJNR 9:1181–1187.

    PubMed  CAS  Google Scholar 

  • Scheltens P, Barkhof F, Valk J, Alsgra PR, Gerritsen van der Hoop R, Nauta J, Wolters EC (1992) White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer’s disease. Evidence for heterogeneity. Brain 115:735–748.

    Article  PubMed  Google Scholar 

  • Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauth J, Vermersch P, Steinling M, Valk J (1993) A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Fazekas F, Kleinert G, Offenbacher H, Gindl K, Payer F, Freidl W, Niederkorn K, Lechner H (1992) Magnetic resonance imaging signal hyperintensities in deep and subcortical white matter: a comparative study between stroke patients and normal volunteers. Arch Neurol 49:825–827.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R (1992) Comparison of magnetic resonance imaging in Alzheimer’s disease, vascular dementia and normal aging. Eur Neurol 32/3:164–169.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Creasey H, Grady CL, Deleo JM, Frederickson HA, Cutler NR, Rapoport SI (1985) Computertomographic analysis of brain morphometrics in 30 healthy men, aged 21 to 81 years. Ann Neurol 17:146–157.

    Article  PubMed  CAS  Google Scholar 

  • Tanna NK, Kohn MI, Horwich DN, Jolies PR, Zimmerman RA, Alves WM, Alavi A (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging: impact on PET data correction for atrophy, part II. Aging and Alzheimer dementia. Radiology 178:123–130.

    PubMed  CAS  Google Scholar 

  • Terry RD, Peck A, De Theresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10:184–192.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson BE, Blessed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242.

    Article  PubMed  CAS  Google Scholar 

  • Wippold II FJ, Gado MH, Morris JC, Duchek JM, Grant EA (1991) Senile dementia and healthy ageing: a longitudinal study. Radiology 179:215–219.

    PubMed  Google Scholar 

  • Wyper DJ, Pickard JD, Matheson M (1979) Accuracy of ventricular volume estimation. J Neurol Neurosurg Psychiatry 42:345–350.

    Article  PubMed  CAS  Google Scholar 

  • Yetkin FZ, Hanghton VM, Fischer ME, Papke RA, Daniels DL, Mark LP, Hendrix LE, Asleson RJ, Johansen J (1992) High signal foci on MR images of the brain: observer variability in their quantification. AJR 159:185–188.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag/Wien

About this paper

Cite this paper

Aichner, F.T., Felber, S.R., Birbamer, G.G. (1994). Computed tomography and magnetic resonance imaging in the diagnosis of Alzheimer’s disease. In: Jellinger, K.A., Ladurner, G., Windisch, M. (eds) New Trends in the Diagnosis and Therapy of Alzheimer’s Disease. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9376-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9376-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82620-1

  • Online ISBN: 978-3-7091-9376-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics