Advertisement

Modeling Nano-Structure Devices

  • K. Hess
  • L. F. Register
Conference paper

Abstract

Fundamental problems of and approaches to modeling nanostructure devices are reviewed. First the requirements for modeling charge transport in classical and nanostructure devices are compared and contrasted. Then the quantum mechanical concepts of transmission probabilities and eigen energies in nanostructures are related back to the classical concepts of resistance and capacitance, respectively. Next a small illustrative sampling of numerical approaches to calculation of the quantum mechanical properties of nanostructures is presented. Finally examples are given of how such theoretical concepts and numerical methods can be applied to modeling existing and future devices.

Keywords

Transmission Coefficient Transmission Probability Differential Capacitance Hard Wall Mesoscopic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).CrossRefGoogle Scholar
  2. [2]
    A carrier density of 1018/cm3 translates to one carrier per 1,000 cubic nanometers.Google Scholar
  3. [3]
    Mesoscopic Phenomena in Solids, ed. by B. L. Altshuler, P. A. Lee and R. A. Webb (North-Holland, Amsterdam, 1991). (Vol. 30 of Modern Problems in Condensed Matter Sciences, ed. by V. M. Agranovich and A. A. Maradudin.)Google Scholar
  4. [4]
    Nanostructures and Mesoscopic Systems, ed. by W. P. Kirk and M. A. Reed (Academic Press, Boston, 1992).Google Scholar
  5. [5]
    J. R. Tucker and M. J. Feldman, Reviews of Modern Physics 57, 1055 (1985).CrossRefGoogle Scholar
  6. [6]
    R. Landauer, IBM J. Res. and Develop. 1, 233 (1957).MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).CrossRefGoogle Scholar
  8. [8]
    A. D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384 (1988).CrossRefGoogle Scholar
  9. [9]
    J. Bardeen, Phys. Rev. Lett 6, 57 (1961).CrossRefGoogle Scholar
  10. [10]
    C. B. Duke in Solid State Physics, ed. by F. Seitz, D. Turnbull and H. Ehrenreich (Academic Press, New York, 1969) Vol. 10, pp 24–32.Google Scholar
  11. [11]
    Because electrons most easily exhibit quantum mechanical behavior in semiconductors, they are usually referred to here. However, the theoretical and numerical methods discussed here apply equally well to holes.Google Scholar
  12. [12]
    F. Sols, Annals of Physics 214, 386 (1992).CrossRefGoogle Scholar
  13. [13]
    F. Sols, unpublished.Google Scholar
  14. [14]
    See, for example, P. Lorrain and D. R. Corson, Electromagnetic Fields and Waves (W. H. Freeman and Company, San Francisco, 1970), p76.Google Scholar
  15. [15]
    M. Macucci, K. Hess and G. J. Iafrate, unpublished.Google Scholar
  16. [16]
    Condensed Matter: Special Issue on Single Charge Tunneling85, ed. by H. Grabert, 319 (1991).Google Scholar
  17. [17]
    D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 44, 6199 (1991).CrossRefGoogle Scholar
  18. [18]
    Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66 3048 (1991).CrossRefGoogle Scholar
  19. [19]
    M. Macucci and K. Hess, Phys. Rev. B bf 46, 15357 (1992).CrossRefGoogle Scholar
  20. [20]
    L. F. Register, U. Ravaioli and K. Hess, J. Appl. Phys. 69, 7153 (1991). [Erratum: 71, 1555 (1992).]CrossRefGoogle Scholar
  21. [21]
    L. F. Register and K. Hess, unpublished.Google Scholar
  22. [22]
    B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).CrossRefGoogle Scholar
  23. [23]
    M. Grupen and K. Hess, unpublished.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • K. Hess
    • 1
    • 2
  • L. F. Register
    • 1
  1. 1.Beckman Institute for Advanced Science and Technology and Coordinated Science LaboratoryUniversity of Illinois at Urbana-ChampaigneUrbanaUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaigneUrbanaUSA

Personalised recommendations