Advertisement

Constituents of Lactarius (Mushrooms)

  • W. M. Daniewski
  • G. Vidari
Chapter
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 77)

Abstract

In the currently recognized 5-kingdom system of Whittaker, Fungi is a kingdom of its own, separated for instance from Plantae and Animalia (1). The kingdom of Fungi is vast and heterogeneous, comprising numerous microscopic species like molds, as well as the larger fungi (mushrooms). The latter are spore-producing fruit-bodies of fungi that in their vegetative phases live as mycelia. Larger fungi of the genus Lactarius belong to subdivision Basidiomycotina, order Agaricales, family Russulaceae. They nourish themselves by degrading organic waste products like plants and animal debris. Many are also important symbionts, forming mycorrhiza with higher plants which explains in some cases their preference for growing among certain kinds of trees (2). The genus is one of the largest in Agaricales and is distributed worldwide; more than 150 species are reported to grow in Europe where mixed forests are their typical habitat.

Keywords

Absolute Configuration Sesquiterpene Lactone Total Synthesis Furan Ring Fungal Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whittaker, R.H.: New Concepts of Kingdoms of Organisms. Science, 163, 150 (1969).CrossRefGoogle Scholar
  2. 2.
    Bon, M.: Clé Monographique du Genre Lactarius (Pers. ex Fr.) S.F. Gray. Documents Mycologiques, Tome X, Fascicule n. 40, Groupe de Mycologie Fondamentale et Appliquée, Lille, 10, 1 (1980).Google Scholar
  3. 3.
    Gamba-Invernizzi, A., L. Garlaschelli, A. Rossi, G. Vidari, and P. Vita-Finzi: New Farnesane Sesquiterpenes from Lactarius porninsis. J. Nat. Prod., 56, 1948 (1993).CrossRefGoogle Scholar
  4. 4.
    Vokac, K., Z. Samek, V. Herout, and F. Sorm: On Terpenes. CCV. The Structure of Two Native Orange Substances from Lactarius deliciosus L. Coll. Czech, Chem. Commun., 35, 745 (1970).CrossRefGoogle Scholar
  5. 5.
    Bergendorff, O., and O. Sterner: The Sesquiterpenes of Lactarius deliciosus and Lactarius deterrimus. Phytochemistry, 27, 97 (1988).CrossRefGoogle Scholar
  6. 6.
    Harmon, A.D., K.H. Weisgraber, and U. Weiss: Preformed Azulene Pigments of Lactarius indigo (Schw.) Fries (Russulaceae, Basidiomycetes). Experientia, 36, 54 (1980).CrossRefGoogle Scholar
  7. 7.
    Sterner, O., R. Bergman, J. Kihlberg, and B. Wickberg: The Sesquiterpenes of Lactarius vellereus and their Role in a Proposed Chemical Defence System. J. Nat. Prod., 48, 279 (1985).CrossRefGoogle Scholar
  8. S.
    Gluchoff-Fiasson, K., and R. Kühner: Le Principe Responsable du Bleuissement au Reactif Sulfovanillique des Cystides ou Lacticiferes de Divers Homobasidiomy-cetes: IntÉrêt Taxonomique. C. R. Acad. Sci. Ser. III, 294, 1067 (1982).Google Scholar
  9. 9.
    De Bernardi, M., L. Garlaschelli, L. Toma, G. Vidari, and P. Vita-Finzi: The Chemical Basis of Hot-tasting and Yellowing of the Mushrooms Lactarius chrysortrheus and L. scrobiculatus. Tetrahedron, 49, 1489 (1993).CrossRefGoogle Scholar
  10. 10.
    Magnusson, G., S. Thoren, J. Dahmen, and K. Leander: Fungal Extractives. VIII. Two Sesquiterpene Furans from Lactarius. Acta Chem. Scand., B 28, 841 (1974).CrossRefGoogle Scholar
  11. 11.
    Battaglia, R., M. De bernardi, G. Fronza, G. Mellerio, G. Vidari, and P. Vita-Finzi: Fungal Metabolites. VIII. Structures of New Sesquiterpenes from Lactarius scrobiculatus. J. Nat. Prod., 43, 319 (1980).CrossRefGoogle Scholar
  12. 12.
    Sterner, O., R. Bergman, J. Kihlberg, J. Oluwadiya, B. Wickberg, G. Vidari, M. De bernardi, F. Demarchi, G. Fronza, and P. Vita-finzi: Basidiomycete Sesquiterpenes: The Silica Gel Induced Degradation of Velutinal Derivatives. J. Org. Chem., 50, 950 (1985).CrossRefGoogle Scholar
  13. 13.
    Ayer, W.A., and L.M. Browne: Terpenoid Metabolites of Mushrooms and Related Basidiomycetes. Tetrahedron, 37, 2199 (1981).Google Scholar
  14. 14.
    Turner, W.: Fungal Metabolites. Academic Press, London (1971).Google Scholar
  15. 75.
    Turner, W. and D. Aldridge: Fungal Metabolites II. Academic Press, London (1983).Google Scholar
  16. 16.
    Vidari, G., and P. Vita-finzi: Sesquiterpenes and Other Secondary Metabolites of Genus Lactarius (Basidiomycetes): Chemistry and Biological Activity. Studies in Natural Products Chemistry, 17, 152 (1995).Google Scholar
  17. 17.
    Hansson, T., and O. Sterner: Studies of the Conversion of Sesquiterpenes in Injured Fruit Bodies of Lactarius vellereus. A Biomimetic Transformation of Stearoylvelut-inal to Isovelleral. Tetrahedron Letters, 32, 2541 (1991).CrossRefGoogle Scholar
  18. 18.
    Hansson, T., Z. Pang, and O. Sterner: The Conversion of [12-2H3]-Labelled Velutinal in Injured Fruit Bodies of Lactarius vellereus. Further Insight into the Biosynthesis of the Russulaceae Sesquiterpenes. Acta Chem. Scand., 47, 403 (1993).CrossRefGoogle Scholar
  19. 19.
    Daniewski, W.M., P.A. Grieco, J.C. Huffman, A. Rymkiewicz, and A. Wawrzuñ: 12-Hydroxycaryophyllene-4,5-oxide, a Sesquiterpene from Lactarius camphoratus. Phytochemistry, 20, 2733 (1981).CrossRefGoogle Scholar
  20. 20.
    De Bernardi, M., G. Mellerio, G. Vidari, P. Vita-Finzi, and G. Fronza: Fungal Metabolites. Part 5. Uvidins, New Drimane Sesquiterpenes from Lactarius uvidus Fries. J. Chem. Soc. Perkin Trans. I, 221 (1980).CrossRefGoogle Scholar
  21. 21.
    De Bernardi, M., G. Mellerio, G. Vidari, P. Vita-Finzi, and G. Fronza: Fungal Metabolites. Part 15. Structure and Chemical Correlations of Uvidin C, D, and E, New Drimane Sesquiterpenes from Lactarius uvidus Fries. J. Chem. Soc. Perkin Trans. I, 2739 (1983).CrossRefGoogle Scholar
  22. 22.
    Garlaschelli, L., G. Mellerio, G. Vidari, and P. Vita-Finzi: New Fatty Acid Esters of Drimane Sesquiterpenes from Lactarius uvidus. J. Nat. Prod., 57, 905 (1994).CrossRefGoogle Scholar
  23. 23.
    Garlaschelli, L., and G. Vidari: Synthetic Studies on Biologically Active Natural Compounds. Part I: Stereospecific Transformation of Uvidin A into (—)-Cinnamodial. Tetrahedron, 45, 7371 (1989).CrossRefGoogle Scholar
  24. 24.
    Garlaschelli, L., P. De Tullio, and G. Vidari: Synthetic Studies on Biologically Active Natural Compounds. Part III. Stereospecific Transformation of Uvidin A into (-)-Cinnamosmolide. Tetrahedron, 47, 6769 (1991).CrossRefGoogle Scholar
  25. 25.
    Gill, M., and W. Steglich: Pigments of Fungi (Macromycetes). In: Progress in the Chemistry of Organic Natural Products, Vol. 51 (W. Herz, G.W. Kirby, R.E. Moore, W. Steglich, and Ch. Tamm, eds.), p. 1. (Springer-Verlag, Wien-New York).Google Scholar
  26. 26.
    Sterner, O., O. Bergendorff, and F. Bocchio: The Isolation of a Guaiane Sesquiterpene from Fruit Bodies of Lactarius sanguifluus. Phytochemistry, 28, 2501 (1989).CrossRefGoogle Scholar
  27. 27.
    Koul, S.K., S.C. Taneya, S.P. Ibraham, K.L. Dhar, and C.K. Atal: A C-formy-lated Azulene from Lactarius deterrimus. Phytochemistry, 24, 181 (1985).CrossRefGoogle Scholar
  28. 28.
    Bertelli, DJ., and J.H. Crabtree: Naturally Occurring Fulvene Hydrocarbons. Tetrahedron, 24, 2079 (1968).CrossRefGoogle Scholar
  29. 29.
    Ayer, W.A., and L. Trifonov: Aromatic Compounds from Liquid Cultures of Lactarius deliciosus. J. Nat. Prod., 57, 839 (1994).CrossRefGoogle Scholar
  30. 30.
    Schmitt, J.A.: Chemotaxonomic Morphological and Phytosociological Studies on Central European Lactarius Species Section Dapetes. Z. Pilzkunde, 39, 219 (1973).Google Scholar
  31. 31.
    Heilbronner, E., and R.W. Schmid: Zur Kenntnis der Sesquiterpene und Azulene. Azulenealdehyde und Azulenketone: Die Struktur des Lactaroviolins. Helv. Chim. Acta, 37, 2018 (1954).CrossRefGoogle Scholar
  32. 32.
    Sorm, F., V. Benesova, J. Krupicka, V. Sneberg, L. Dolejs, V. Herout, and J. Sicher: On Terpenes. LXV. The Constitution of Lactaroviolin. Synthesis of 1-Ethyl-4-methy]-7-isopropylazulene and 4-Ethyl-l-methyl-7-isopropylazulene. Coll. Czech, Chem. Commun., 20, 227 (1955).Google Scholar
  33. 53.
    Benesova, V., V. Herout, and F. Sorm: Plant Substances. III. Substances from Lactarius deliciosus L. Coll. Czech, Chem. Commun., 19, 1351 (1954).Google Scholar
  34. 34.
    De Rosa, S., and S. De Stefano: Guaiane Sesquiterpenes from Lactarius sanguifluus. Phytochemistry, 26, 2007 (1987).CrossRefGoogle Scholar
  35. 35.
    Vidari, G., L. Garlaschelli, A. Rossi, and P. Vita-finzi: New Protoilludane Sesquiterpenes from Lactarius violascens. Tetrahedron Letters, 39, 1957 (1998).CrossRefGoogle Scholar
  36. 36.
    Favre-Bonvin, J., K. Gluchoff-Fiasson, and J. Bernillon: Structure du Stearyl-Velutinal, Sesquiterpenoide Naturel de Lactarius velutinus Bert. Tetrahedron Letters, 23, 1907 (1982).CrossRefGoogle Scholar
  37. 37.
    Sterner, O., R. Bergman, E. Kesler, L. Nilsson, J. Oluwadiya, and B. Wickberg: Velutinal Esters of Lactarius vellereus and Lactarius necator. The Preparation of Free Velutinal. Tetrahedron Letters, 24, 1415 (1CrossRefGoogle Scholar
  38. 38.
    Sterner, O.: The Russulaceae Sesquiterpenes. Ph.D. Dissertation. University of Lund, Sweden (1985).Google Scholar
  39. 39.
    Steglich, W., and O. Sterner: Isolierung von Sesquiterpenoiden aus der Becher-noralle. Artomyces pyxidatus (Clavicoronaceae). Z. Mykol, 54, 175 (1988).Google Scholar
  40. 40.
    Camazine, S., and A.TJ. Lupo: Labile Toxic Compounds of the Lactarii: the Role of the Laticiferous Hyphae as a Storage Depot for Precursors of Pungent Dialdehydes. Mycologia, 76, 355 (1984).CrossRefGoogle Scholar
  41. 4L.
    Camazine, S., J.F. Resch, T. Eisner, and J. Meinwald: Mushroom Chemical Defense: Pungent Sesquiterpenoid Dialdehyde Antifeedant to Opossum. J. Chem. Ecol, 23, 1439 (1983).CrossRefGoogle Scholar
  42. 42.
    Hansson, T., O. Sterner, and A. Strid: Chemotaxonomic Evidence for a Division of Lactarius vellereus and Lactarius beriillonii as Different Species. Phytochemistry, 39, 363 (1995).CrossRefGoogle Scholar
  43. 43.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, P. Skibicki, J. Krajewski, and P. Gluzinski: Marasmane Lactones from Lactarius vellereus. Phytochemistry, 31, 913 (1992).Google Scholar
  44. 44.
    Daniewski, W.M., M. Kocór, T. Januszewski, and A. Rymkiewicz: Constituents of Higher Fungi. Part XI. New Monohydroxylactone from Lactarius necator. Sesquiterpene Monohydroxylactone Contents as Characteristic Chemotaxonomic Features of Various Lactarius Species. Polish J. Chem., 55, 807 (1981).Google Scholar
  45. 45.
    Talvitie, A., K.-G. Widen, and E.-L. Seppa: 1HNMR Spectroscopic Study of Blennin A and 15-Hydroxyblennin A, Two Sesquiterpene Lactones from Lactarius torminosus (Russulaceae) Mushrooms. Finn. Chem. Lett., 62 (1980).Google Scholar
  46. 46.
    Pyysalo, H.: Identification of Volatile Compounds in Seven Edible Fresh Mushrooms. Acta Chem. Scand., B, 30, 235 (1976).CrossRefGoogle Scholar
  47. 47.
    Sterner, O.: The Co-formation of Sesquiterpene Aldehydes and Lactones in Injured Fruit Bodies of Lactarius necator and L. circellatus. The Isolation of epi-Piperalol. Acta Chem. Scand., 43, 694 (1989).CrossRefGoogle Scholar
  48. 48.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, G. Vidari, L. Garlaschelli, G. Fronza, and M. Budesinsky: 7-Epi-pipertriol, a Lactarane Sesquiterpene from Lactarius necator. Phytochemistry, 27, 3314 (1988).Google Scholar
  49. 49.
    Pang, Z., F. Bocchio, and O. Sterner: The Isolation of New Sesquiterpene Aldehydes from Injured Fruit Bodies of Lactarius scrobiculatus. Tetrahedron Letters, 33, 6863 (1992).CrossRefGoogle Scholar
  50. 50.
    De Bernardi, M., G. Fronza, G. Vidari, and P. Vita-Finzi: Fungal Metabolites II: New Sesquiterpenes from Lactarius scrobiculatus Scop. (Russulaceae). Chim. e Ind., 58, 177 (1976).Google Scholar
  51. 51.
    Cradwick, P.D., and G.A. Sim: Crystallographic Determinations of Partial Stereochemistries of the Sesquiterpenoids Illudol and Marasmic Acid. J. Chem. Soc, Chem. Commun., 431 (1971).Google Scholar
  52. 52.
    Comer, F.W., F. Mccapra, I.H. Qureshi, and A.I. Scott: The Structure and Chemistry of Hirsutic Acid. Tetrahedron, 23, 4761 (1967).CrossRefGoogle Scholar
  53. 53.
    List, PH., and H. Hackenberg: Velleral und iso-Velleral. Scharf Schmeckende Stoffe aus Lactarius vellereus Fries. Arch. Pharmaz., 302, 125 (1969).CrossRefGoogle Scholar
  54. 54.
    Magnusson, G., S. Thoren, and B. Wickberg: Fungal Extractives I. Structure of a Sesquiterpene Dialdehyde from Lactarius by Computer Simulation of the NMR Spectrum. Tetrahedron Letters, 1105 (1972).Google Scholar
  55. 55.
    Magnusson, G., S. Thoren, and T. Drakenberg: Fungal Extractives-IV. Structure of a Novel Sesquiterpene Dialdehyde from Lactarius by Spectroscopic Methods. Tetrahedron, 29, 1621 (1973).CrossRefGoogle Scholar
  56. 56.
    De Bernardi, M., G. Fronza, G. Mellerio, V. Valla, G. Vidari, and P. Vita-Finzi: Fungal Metabolites. XVII. Sesquiterpenes from Lactarius pallidus Persoon. Gazz. Chim. Ital., 114, 163 (1984).Google Scholar
  57. 57.
    Bergman, R., T. Hansson, O. Sterner, and B. Wickberg: ATotal Synthesis of (+)-Isovelleral. The Absolute Configuration of the Russulaceae Sesquiterpenes. J. Chem. Soc, Chem. Commun., 865 (1990).Google Scholar
  58. 58.
    Daniewski, W.M., W. Kroszczynski, P. Skibicki, M. De Bernardi, G. Fronza, G. Vidari, and P. Vita-Finzi: Normarasmane Sesquiterpenes from Lactarius vellereus. Phytochemistry, 27, 187 (1988).CrossRefGoogle Scholar
  59. 59.
    Hansson, T., O. Sterner, B. Wickberg, and R. Bergman: The Thermal Isomer-ization of the Sesquiterpene Isovelleral and Merulidial. A Reversible Ring Opening of the cw-Methylcyclopropanecarbaldehyde Group via an Intramolecular Ene Reaction. J. Org. Chem., 57, 3822 (1992).CrossRefGoogle Scholar
  60. 60.
    Sterner, O., R. Bergman, C. Franzen, and B. Wickberg: New Sesquiterpenes in a Proposed Russulaceae Chemical Defense System. Tetrahedron Letters, 26, 3163 (1985).CrossRefGoogle Scholar
  61. 61.
    Sterner, O., R.E. Carter, and L.M. Nilsson: Structure-Activity Relationship for Unsaturated Dialdehydes 1. The Mutagenic Activity of 18 Compounds in the Salmonella/Microsome Assay. Mutation Res., 188, 169 (1987).CrossRefGoogle Scholar
  62. 62.
    Jonassohn, M., H. Anke, P. Morales, and O. Sterner: Structure — Activity Relationship for Unsaturated Dialdehydes. The Generation of Bioactive Products by Autoxidation of Isovelleral and Merulidial. Acta Chem. Scand., 49, 530 (1995).CrossRefGoogle Scholar
  63. 63.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, P. Skibicki, G. Fronza, and G. Vidari: Constituents of Higher Fungi. XX. New Sesquiterpenoid Triol of Marasmane Skeleton from Lactarius vellereus. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 37, 283 (1989).Google Scholar
  64. 64.
    Daniewski, W.M., M. Gumuika, P. Skibicki, U. Jacobsson, and T. Norin: Constituents of Higher Fungi. Part XIX. New Sesquiterpenoid Lactone of Marasmane Skeleton from Lactarius vellereus. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 35, 251 (1987).Google Scholar
  65. 65.
    Nozoe, S., H. Matsumoto, and S. Urano: The Structure of New Sesquiterpenes from Basidiomycetes. Tetrahedron Letters, 3125 (1971).Google Scholar
  66. 66.
    Daniewski, W.M., M. Gumulka, D. Truszewska, U. Jacobsson, and T. Norin: Monohydroxylactones of Lactarius vellereus. Phytochemistry, 41, 1093 (1996).CrossRefGoogle Scholar
  67. 67.
    Daniewski, W.M., M. Gumulka, P. Skibicki, W. Anczewski, U. Jacobsson, and T. Norin: New Constituents of Lactarius vellereus. Natural Product Letters, 5, 123 (1994).CrossRefGoogle Scholar
  68. 68.
    Debernardi, M., G. Vidari, P. Vita-finzi, and K. Gluchoff-Fiasson: Biogenesis-Like Conversion of Marasmane to Lactarane and Seco-Lactarane Skeleton. Tetrahedron Letters, 23, 4623 (1982).CrossRefGoogle Scholar
  69. 69.
    Debernardi, M., G. Fronza, A.P. Gatti, G. Vidari, and P. Vita-Finzi: New Marasmane Sesquiterpenes from Lactarius rubrocinctus (Basidiomycetes). 15th IUPAC International Symposium on the Chemistry of Natural Products, PA 75 (1986).Google Scholar
  70. 70.
    Abreu, P., M. Araujo, T. Fonseca, and S.P. Santos: Chemical Composition of Lactarius controversus, Basidiomycetes Fungus. Pharm. Pharmacol. Lett., 7, 138 (1997).Google Scholar
  71. 71.
    Nozoe, S., H. Kobayashi, S. Urano and J. Furukawa: Isolation of Δ6-Proto-illudene and the Related Alcohols. Tetrahedron Letters, 1381 (1977).Google Scholar
  72. 72.
    Sterner, O., R. Bergman, and B. Wickberg: The Synthetic Preparation of the Fungal Sesquiterpene Velutinal from Related Compounds. Finn. Chem. Lett., 116 (1985).Google Scholar
  73. 73.
    Gluzinski, P., W.M. Daniewski, M. Gumulka, and D. Przesmycka: Crystal and Molecular Structure of 10-tx-(N-trichloroacetyl-carbamate)-13-hydroxy-marasm-7-en-5-oic Acid y-Lactone. Polish J. Chem., 70, 458 (1996).Google Scholar
  74. 74.
    Favre-Bonvin, J., and K. Gluchoff-Fiasson: Structures of Two Glutinopallal Esters, New Natural Sesquiterpenoids from Lactarius glutinopallens. Phytochemistry, 27, 286 (1988).CrossRefGoogle Scholar
  75. 75.
    Daniewski, W.M., and M. Kocór: Isolation and Structure of Some New Sesquiterpenes from Lactarius rufus. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 18, 585 (1970).Google Scholar
  76. 76.
    Daniewski, W.M., M. Kocór, and S. Thoren: Constituents of Higher Fungi. Part VIII. Isolactarorufin, a Novel Tetracyclic Sesquiterpene Lactone from Lactarius rufus. Heterocycles, 5, 77 (1976).CrossRefGoogle Scholar
  77. 77.
    Konitz, A., M. Bogucka-Ledóchowska, Z. Dauter, A. Hempel, and E. Bor-owski: The Structure of Isolactarorufin. Tetrahedron Letters, 3401 (1977).Google Scholar
  78. 78.
    Daniewski, W.M., M. Kocór, and S. Thoren: Constituents of Higher Fungi. Part X. Isolactarorufin, a Novel Tetracyclic Sesquiterpene Lactone from Lactarius rufus. Polish J. Chem., 52, 561 (1978).Google Scholar
  79. 79.
    Daniewski, W.M., W. Kroszczynski, and A. Wawrzun: Constituents of Higher Fungi. Part XVIII. Dihydroxylactone Contents of Various Lactarius Species as Characteristic Chemotaxonomic Features. Polish J. Chem., 61, 123 (1987).Google Scholar
  80. 80.
    Daniewski, W.M., M. Gumulka, E. Bloszyk, U. Jacobsson, and T. Norin: Isovellerol and New Isolactarane Sesquiterpenes, Their Structure and Antifeedant Activity. Polish J. Chem., 71, 1254 (1997).Google Scholar
  81. 81.
    Froborg, J., and G. Magnusson: Fungal Extractives. 12. Construction of the Vellerane Skeleton with Total Syntheses of Racemic Velleral, Vellerolactone, and Pyrovellerolactone. Revised Structures. J. Amer. Chem. Soc, 100, 6728 (1978).CrossRefGoogle Scholar
  82. 82.
    Magnusson, G., and S. Thoren: Fungal Extractives V. The Stereostructure of two Sesquiterpene Lactones from Lactarius. Acta Chem. Scand., 27, 2396 (1973).CrossRefGoogle Scholar
  83. 83.
    Daniewski, W.M., and M. Kocór: Constituents of Higher Fungi. II. Structure of Lactarorufin A. Bull. Acad. Polon. Sci., Ser. Sci. Chirr., 19, 553 (1971).Google Scholar
  84. 84.
    Dbernardi, M., G. Fronza, G. Mellerio, G. Vidari, and P. Vita-finzi: New Sesquiterpene Hydroxylactones from Lactarius Species. Phytochemistry, 18, 293 (1979).CrossRefGoogle Scholar
  85. 85.
    Daniewski, W.M., M. Kocór, and J. Król: Constituents of Higher Fungi. Part VII. Lactarorufin N and Revised Structures of Lactarorufins. Rocz. Chem., 50, 2095 (1976).Google Scholar
  86. 86.
    Daniewski, W.M., A. Wawrzun, M. De bernardi, G. Vidari, P. Vita-Finzi, G. Fronza, and G. Gatti: Structural Studies on Lactarius Sesquiterpenes: Structure Elucidation of Lactarorufins D and E and Conformational Analysis of Lactaran-5-olides. Tetrahedron, 40, 2757 (1984).CrossRefGoogle Scholar
  87. 87.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, P. Skibicki, U. Jacobsson, and T. Norin: Synthesis of 5-Hydroxy-lactar-6-en-13-oic-acid y-Lactones, the Sesqui-terpenoid Derivatives of Lactarius Origin. Polish J. Chem., 66, 791 (1992).Google Scholar
  88. 88.
    Zhang, J., and X.Z. Feng: Sesquiterpene Hydroxylactones from pLactarius subvel-lereus. Phytochemistry, 46, 157 (1997).CrossRefGoogle Scholar
  89. 89.
    Daniewski, W.M., A. Ejchart, J. Jurczak, L. Kozerski, and J.S. Pyrek: Constituents of Higher Fungi. Part III. Confirmation and Stereochemistry of Structure of Lactarorufin A by Eu(dpm)3 Shifted NMR Spectra. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 20, 131 (1972).Google Scholar
  90. 90.
    Garlaschelli, L., L. Toma, G. Vidari, and D. Colombo: Conformational Studies and Stereochemical Assignments of the Lactarane Sesquiterpenes Furoscrobiculin D and Blennin D. Tetrahedron, 50, 1211 (1994).CrossRefGoogle Scholar
  91. 91.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, B. Kamienski, P. Skibicki, U. Jacobsson, and T. Norin: Constituents of Higher Fungi. XXI. Transformation of Lactarorufin A into Lactarorufin E and the Synthesis of 3-Epi-actarorufin D. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 37, 289 (1989).Google Scholar
  92. 92.
    Bosetti, A., G. Fronza, G. Vidari, and P. Vita-Finzi: Norlactarane and Lactarane Sesquiterpenes from Lactarius scrobiculatus. Phytochemistry, 28, 1427 (1989).CrossRefGoogle Scholar
  93. 93.
    Daniewski, W.M., M. Gumulka, P. Skibicki, J. Krajewski, and P. Gluzinski: 2(3)-8(9)-Bisanhydrolactarorufin A and a Highly Oxygenated Furanol from Lactarius vellereus. Phytochemistry, 30, 1326 (1991).CrossRefGoogle Scholar
  94. 94.
    Daniewski, W.M., M. Gumueka, K. Ptaszynska, P. Skibicki, U. Jacobsson, and T. Norin: S-Deoxy-S-Epi-lactaroscrobiculide B, a Sesquiterpene from Lactarius vellereus. Phytochemistry, 31, 3933 (1992).CrossRefGoogle Scholar
  95. 95.
    Daniewski, W.M., M. Kocór, and B. Zómowska: Constituents of Higher Fungi. Part V. Structure of Lactarorufin B. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 21, 785 (1973).Google Scholar
  96. 96.
    Magnusson, G., and S. Thoren: Fungal Extractives III. Two Sesquiterpene Lactones from Lactarius. Acta Chem. Scand., 27, 1573 (1973).CrossRefGoogle Scholar
  97. 97.
    Daniewski, W.M., M. Gumulka, E. Pankowska, K. Ptaszyńska, E. Bloszyk, U. Jacobsson, and T. Norin: 3,8-Ethers of Lactarane Sesquiterpenes. Phytochemistry, 32, 1499 (1993).CrossRefGoogle Scholar
  98. 98.
    De Bernardi, M., G. Fronza, G. Vidari, and P. Vita-finzi: Fungal Metabolites XX: Chemical Correlation of Lactarane and Secolactarane Sesquiterpenes. Absolute Configuration of Furosardonin A, Lactaral and Blennin C. Tetrahedron, 42, 4277 (1986).CrossRefGoogle Scholar
  99. 99.
    Daniewski, W.M., M. Kocór, and J. Król: Constituents of Higher Fungi. VI. Two New Sesquiterpenoic Lactones from Lactarius necator. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 23, 637 (1975).Google Scholar
  100. 100.
    Daniewski, W.M., W. Kroszczynski, A. Wawrzun, and A. Rymkiewicz: Constituents of Higher Fungi. Part XVI. Identification of Lactarius Species by HPLC Using Sesquiterpene Monohydroxylactone Contents as Characteristic Chemotaxo-nomic Features. J. Liquid Chrom., 7, 2915 (1984).CrossRefGoogle Scholar
  101. 101.
    Seppa, E.-L., and K.-G. Widen: Sesquiterpenoids of Lactarius torminosus and Lactarius trivialis and Correlation of the Sesquiterpenoid Composition of Lactarius Species with the Generic Subdivision. Ann.Bot.Fennici, 17, 56 (1980).Google Scholar
  102. 102.
    Pyysalo, H., E.-L. Seppa, and K.-G. Widen: Application of Gas Chromatography to the Analysis of Sesquiterpene Lactones from Lactarius (Russulaceae) Mushrooms. J. Chrom., 190, 466 (1980).CrossRefGoogle Scholar
  103. 103.
    Vidari, G., M. De Bernardi, P. Vita-Finzi, and G. Fronza: Sesquiterpenes from Lactarius blennius. Phytochemistry, 15, 1953 (1976).CrossRefGoogle Scholar
  104. 104.
    Daniewski, W.M., and J. Król: Constituents of Higher Fungi. Part XII. Rearrangement of Lactone Ring of 3-Deoxy-6ß,7ß-dihydro-8-epilactarorufin A. Corrected Structures of Lactarorufin N and 3-Deoxylactarorufin A. Polish J. Chem., 55, 1247 (1981).Google Scholar
  105. 105.
    De Bernardi, M., G. Fronza, G. Vidari, and P. Vita-fpinzi: Stereochemistry of Blennin A and Blennin D from Lactarius blennius. Phytochemistry, 19, 99 (1980).CrossRefGoogle Scholar
  106. 106.
    Daniewski, W.M., M. Kocór, and J. Król: Constituents of Higher Fungi. Part IX. Structure of 3-Deoxylactarorufin A. Rocz. Chem., 51, 1395 (1977).Google Scholar
  107. 107.
    Bogucka-Ledóchowska, M., A. Hempel, Z. Dauter, A. Konitz, and E. Bor-Owski: The Structure of Lactarorufin B-3,8-ether 14-p-bromobenzoate. Tetrahedron Letters, 2267 (1976).Google Scholar
  108. 108.
    Baranowska, E., and W.M. Daniewski: Constituents of Higher Fungi. IV. Mass Spectroscopic Investigations of Lactarorufin A and Its Derivatives. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 20, 313 (1972).Google Scholar
  109. 109.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, J. Sitkowski, P. Skibicki, U. Jacobsson, and T. Norin: Constituents of Higher Fungi. XXIII. New Lactarolide from Lactarius mitissimus. Bull. Acad. Polon. Sci., Ser. Sci. Chim., 39, 251 (1991).Google Scholar
  110. 110.
    Daniewski, W.M., M. Gumulka, and P. Skibicki: Furantriol, a Lactarane Sesquiterpene from Lactalius mitissimus. Phytochemistry, 29, 527 (1990).CrossRefGoogle Scholar
  111. 111.
    Daniewski, W.M., P. Gluzinski, M. Gumulka, J.W. Krajewski, and K. Ptaszynska: Synthesis of 9-epi-(trans-fased) Lactarane Sesquiterpenes. Polish J. Chem., 68, 287 (1994).Google Scholar
  112. 112.
    Andina, D., M. De Bernardi, A. Del-Vecchio, G. Fronza, G. Mellerio, G. Vidari, and P. Vita-Finzi: Sesquiterpenes from Russula sardonia. Phytochemistry, 19, 93 (1980).CrossRefGoogle Scholar
  113. 113.
    Widen, K.-G., and E.-L. Seppa: 15-Hydroxyblennin A, a New Lactarane-Type Sesquiterpene Lactone Isolated from Laclarius lorminosus. Phytochemistry, 18, 1226 (1979).CrossRefGoogle Scholar
  114. 114.
    Daniewski, W.M., W. Kroszczynski, and J. Krol: Constituents of Higher Fungi. Part XIV. Regioselectivity of Furan Oxidation Induced by Neighboring Hydroxyl Groups. Transformation of Furandiol into Lactarorufin A. Polish J. Chem., 57, 483 (1983).Google Scholar
  115. 115.
    Daniewski, W.M., M. Gumulka, K. Ptaszynska, P. Skibicki, E. Bloszyk, B. Drozdz, S. Stromberg, T. Norin, and M. Holub: Antifeedant Activity of Some Sesquiterpenoids of the Genus Lactarius. Eur. J. Entomol., 90, 65 (1993).Google Scholar
  116. 116.
    Daniewski, W.M., M. Gumulka, P. Gluzinski, J. Krajewski, E. Pankowska, K. Ptaszynska, J. Sitkowski, and E. Bloszyk: 3-Ethoxy Lactarane Sesquiterpenes of Lactarius Origin Antifeedant Activity. Polish J. Chem., 66, 1249 (1992).Google Scholar
  117. 117.
    Zhang, J., and X.Z. Feng: Subvellerolactone C, a New Lactarane Sesquiterpene from Lactarius subvellereus. Chin. Chem. Lett., 7, 1097 (1996).Google Scholar
  118. 118.
    Daniewski, W.M., M. Gumulka, W. Anczewski, E. Bloszyk, B. Drozdz, U. Jacobsson, and T. Norin: 3-Ethoxy-9-epi(trans-fused) Lactarane Sesquiterpenes of Lactarius Origin. Antifeedant Activity. Polish J. Chem., 69, 1687 (1995).Google Scholar
  119. 119.
    Vidari, G., L. Garlaschelli, M. De Bernardi, G. Fronza, and P. Vita-Finzr: The Structure of a New Epoxylactone from Lactarius scrobiculatus Scop. (Russulaceae) by Spectroscopic Methods. Tetrahedron Letters, 1773 (1975).Google Scholar
  120. 120.
    Sterner, O., O. Wik, and R.E. Carter: The Structure of a Novel Fungal Sesquiterpene, Elucidated by Spectral Methods. Acta Chem. Scand., B42, 43 (1988).CrossRefGoogle Scholar
  121. 121.
    Daniewski, W.M., P. Gluzinski, J.W. Krajewski, and P. Skibicki: X-ray Structural Investigation of 5,13-Epoxy-3ß-hydroxy-lactara-2(9),5,7(13)-trien-4,8-dion. J. Cryst. Spectr. Research, 21, 407 (1991).CrossRefGoogle Scholar
  122. 122.
    Froborg, J., and G. Magnusson: Fungal Extractives-XL On the Biogenetic Interrelationship between the Marasmane-and Vellerane Sesquiterpene Skeletons. Tetrahedron, 34, 2027 (1978).CrossRefGoogle Scholar
  123. 123.
    Garnier, L, J. Mahuteau, and M. Plat: Constituents of Lactarius hepaticus. Plant. Med. Phytother., 24, 87 (1990).Google Scholar
  124. 124.
    Kihlberg, J., R. Bergman, L. Nilsson, O. Sterner, and B. Wickberg: The Structure of a Novel Sesquiterpene Furan Alcohol with a Lactarane Skeleton. Tetrahedron Letters, 24, 4631 (1983).CrossRefGoogle Scholar
  125. 125.
    Krajewski, J.W., P. Gluzinski, W.M. Daniewski, M. Gumulka, K. Ptaszynska, A. Kemme, and A. Mishnev: Crystal and Molecular Structure of 8-Epi-9-epi- furandiol, an Unusual Trans-fused Lactarane Sesquiterpene. Polish J. Chem., 68, 515 (1994).Google Scholar
  126. 126.
    Gluzinski, P., W.M. Daniewski, and M. Gumulka: Crystal and Molecular Structure of 3-O-Ethyl-8-repi-9-epi-furandiol, a Trans-fused Lactarane Sesquiterpene. Polish J. Chem., 70, 60 (1996).Google Scholar
  127. 127.
    Magnusson, G., and S. Thoren: Fungal Extractives-VI. Structure of Lactaral, a New Sesquiterpene Furan-3-aldehyde from Lactarius, Spectroscopic Methods. Tetrahedron, 30, 1431 (1974).CrossRefGoogle Scholar
  128. 128.
    Froborg, J., G. Magnusson, and S. Thoren: Fungal Extractives. VII. A Formal Synthesis of (±)-Lactaral. Acta Chem. Scand., B28, 265 (1974).CrossRefGoogle Scholar
  129. 129.
    Suortti, T., A. Wright, and A. Koskinen: Necatorin, a Highly Mutagenic Compound from Lactarius necator. Phytochemistry, 22, 2873 (1983).CrossRefGoogle Scholar
  130. 130.
    Hilger, C.S., B. Fugmann, and W. Steglich: Synthesis of Necatorone. Tetrahedron Letters, 26, 5975 (1985).CrossRefGoogle Scholar
  131. 131.
    Fugmann, B., B. Steffan, and W. Steolicb: Necatorone, an Alkaloidal Pigment from the Gilled Toadstool Lactarius necator (Agaricales). Tetrahedron Letters, 25, 3575 (1984).CrossRefGoogle Scholar
  132. 132.
    Klamann, J.-D., B. Fugmann, and W. Steglich: Alkaloidal Pigments from Lactarius necator and L. atroviridis. Phytochemistry, 28, 3519 (1989).CrossRefGoogle Scholar
  133. 133.
    Takahashi, A., G. Kusano, T. Ohta, and S. Nozoe: The Constituents of Lactarius flavidulus Imai. Chem. Pharm. Bull., 36, 2366 (1988).CrossRefGoogle Scholar
  134. 134.
    Fujimoto, H., Y. Nakayama, and M. Yamazaki: Identification of Immunosuppres-sive Components of a Mushroom, Lactarius flavidulus. Chem. Pharm. Bull., 41, 654 (1993).CrossRefGoogle Scholar
  135. 135.
    Takahashi, A., G. Kusano, T. Ohta, and S. Nozoe: Revised Structures of Flavidulols. Constituents of Lactarius flavidulus Imai and the Structure of Flavidulol D. Chem. Pharm. Bull, 41, 2032 (1993).CrossRefGoogle Scholar
  136. 136.
    Gomez, F., L. Quijano, J.S. Calderon, and T. Rios: Terpenoids Isolated from Wigandia kunthii. Phytochemistry, 19, 2202 (1980).CrossRefGoogle Scholar
  137. 137.
    Vidari, G., P. Vita-finzi, A.M. Zanocchi, and G. Pedrali noy: A Bioactive Tetraprenylphenol from Lactarius lignyotus. J. Nat. Prod., 58, 893 (1995).CrossRefGoogle Scholar
  138. 138.
    Cimino, G., S. De Stefano, and L. Minale: Prenylated Quinones in Marine Sponges: Ircinia sp. Experientia, 28, 1401 (1972).CrossRefGoogle Scholar
  139. 139.
    Reynolds, G.W.: Prenylated Hydroquinones: Contact Allergenes from Trichomes of Phacelia 0 minor and P. parryi. Phytochemistry, 20, 1365 (1981).CrossRefGoogle Scholar
  140. 140.
    De Bernardi, M., G. Vidari, P. Vita-Finzi, and G. Fronza: The Chemistry of Lactarius fuliginosus and Lactarius picinus. Tetrahedron, 48, 7331 (1992).CrossRefGoogle Scholar
  141. 141.
    Conca, E., M. De Bernardi, G. Fronza, M.A. Girometta, G. Mellerio, G. Vidari, and P. Vita-Finzi: Fungal Metabolites 10. New Chromenes from Lactarius fuliginosus Fries and Lactarius picinus Fries. Tetrahedron Letters, 22, 4327 (1981).CrossRefGoogle Scholar
  142. 142.
    Allievi, C., M. De Bernardi, F. Demarchi, and G. Mellerio: Chromatographie Analysis of 2,2-Dimethylchromene Derivatives. J. Chrom., 261, 311 (1983).CrossRefGoogle Scholar
  143. 143.
    Zhang, J., and X.Z. Feng: Lactariolide, a New 14-Membered Ring Compound from Lactarius subvellereus. Chin. Chem. Lett., 8, 135 (1997).Google Scholar
  144. 144.
    Kobata, K., T. Wada, Y. Hayashi, and H. Shibata: Studies on Chemical Components of Mushrooms. Part III. Volemolide, a Novel Norsterol from the Fungus Lactarius volemus. Biosci. Biotechnol. Biochem., 58, 1542 (1994).CrossRefGoogle Scholar
  145. 145.
    Thompson, S.K., and C.H. Heathcock: Total Synthesis of Some Marasmane and Lactarane Sesquiterpenes. J. Org. Chem., 57, 5979 (1992).CrossRefGoogle Scholar
  146. 146.
    Hansson, T., R. Bergman, O. Sterner, and B. Wickberg: The Mechanism of the Thermal Rearrangement of the Marasmane Sesquiterpene (+) Isovelleral. Cyclopropane Ring Closure it via an Intramolecular Ene Reaction. J. Chem. Soc, Chem. Commun., 1260 (1990).Google Scholar
  147. 147.
    Ferland, J.M., Y. Lefebvre, R. Deghenhi, and K. Wiesner: Synthetic New Cardenolides. Tetrahedron Letters, 3617 (1966).Google Scholar
  148. 148.
    Ziegler, F.E., and B.B. Jaynes: Rearrangement of a Hindered Allylic Alcohol During Vanadium-Catalyzed Epoxidation. A Short Synthesis of Uvidin C. Tetrahedron Letters, 26, 5875 (1985).Google Scholar
  149. 149.
    Lopez, J., J. Sierra, and M. Cortes: Synthesis of Natural Uvidin C. Chem. Lett., 2073 (1986).Google Scholar
  150. 150.
    Thompson, S.K., and C.H. Heathcock: Total Synthesis of (±)-Isovelleral, a Mutagenic Sesquiterpene Dialdehyde from Lactarius vellereus. J. Org. Chem., 55, 3004 (1990).CrossRefGoogle Scholar
  151. 151.
    Fex, T., J. Froborg, G. Magnusson, and S. Thoren: Fungal Extractives. 10. An Alternative Synthesis of the Velleral Skeleton. J. Org. Chem., 41, 3518 (1976).CrossRefGoogle Scholar
  152. 152.
    Tochtermann, W., S. Bruhn, M. Meints, and C. Wolff: Synthese Funktionali-sierte Hydroazulene, ein Neuer Zugang zum Lactaran-Gerüst. Tetrahedron, 50, 9657 (1994).CrossRefGoogle Scholar
  153. 153.
    Tochtermann, W., S. Bruhn, M. Meints, C. Wolff, E.-M. Peters, K. Peters, and H.G. von Schnering: Synthese Stereoisomerer 4,7-Epoxy-Hydroazulen-5,6-Dicar-bonsauredimethylester mit Lactaran-Gerüst. Tetrahedron, 51, 1623 (1995).CrossRefGoogle Scholar
  154. 154.
    Wockenfus, B., C. Wolff, and W. Tochtermann: Synthesis of 2(3)-8(9)-Bisan-hydrolactarorufin A. Tetrahedron, 53, 13703 (1997).CrossRefGoogle Scholar
  155. 155.
    Price, M.E., and N.E. Schore: Total Synthesis of Furanether B. J. Org. Chem., 54, 5662 (1989).CrossRefGoogle Scholar
  156. 156.
    Price, M.E., and N.E. Schore: Efficient Synthetic Entry to Oxygen-Bridged Lactar-anes Using Organometallic Methodology: A Short Synthesis of Furanether B. Tetrahedron Letters, 30, 5865 (1989).CrossRefGoogle Scholar
  157. 157.
    Price, M.E. and N.E. Schore: Improved Synthesis of 3,4-Disubstituted Furans: Use of Phase-Transfer Conditions. J. Org. Chem., 54, 2777 (1989).CrossRefGoogle Scholar
  158. 158.
    Molander, G.A., and J.S. Carey: Total Synthesis of Furanether B. An Application of a [3+4] Annulation Strategy. J. Org. Chem., 60, 4845 (1995).CrossRefGoogle Scholar
  159. 159.
    Bell, R.P.L., A. Sobolev, J.B.P.A. Wijnberg, and A. De Groot: Base-Induced Rearrangement of Perhydronaphthalene-l,4-diol Monosulphonate Esters to 11-Oxa-tricyclo [5.3.1.02.6]undecanes. Total Synthesis of Furanether B. J. Org. Chem., 63, 122 (1998).Google Scholar
  160. 160.
    Ogino, T., C. Kurihara, Y. Baba, and K. Kanematsu: Total Synthesis of Furo-scrobiculin B. J. Chem. Soc, Chem. Commun., 1979 (1994).Google Scholar
  161. 161.
    Seki, M., T. Sakamoto, H. Suemune, and K. Kanematsu: Total Synthesis of (±)-Furoscrobiculin B. J. Chem. Soc. Perkin Trans. I, 1707 (1997).CrossRefGoogle Scholar
  162. 162.
    Tank, S.P., and D.B. Head: Furans in Synthesis. The Preparation of (±)-Lactaral. Tetrahedron Letters, 23, 5509 (1982).CrossRefGoogle Scholar
  163. 163.
    Nawrot, J., E. BtoszYK, J. Harmatha, L. Novotny, and B. Drozdz: Action of Antifeedants of Plant Origin on Beetles Infesting Stored Products. Acta Entomol. Bohemoslov., 83, 327 (1986).Google Scholar
  164. 164.
    Nawrot, J., E. Btoszyk, H. Grabarczyk, B. Drozdz, W.M. Daniewski, and M. Holub: Further Evaluation of Feeding Deterrence of Sesquiterpene Lactones to Storage Pests. Prace Naukowe. Pr. Nauk. IOR, 25, 91 (1983).Google Scholar
  165. 165.
    Knuutinen, J., and A. Wright: The Mutagenicity of Lactarius Mushrooms. Mutation Res., 103, 115 (1982).CrossRefGoogle Scholar
  166. 166.
    Sterner, O., R. Bergman, E. Kesler, G. Magnusson, L. Nilsson, B. Wickberg, and E. Zimerson: Mutagens in Larger Fungi, I. Forty-eight Species Screened for Mutagenic Activity in the Salmonella Microsome Assay. Mutation Res., 101, 269 (1982).CrossRefGoogle Scholar
  167. 167.
    Anke, H., O. Bergendorff, and O. sterner: Assays of the Biological Activities of Guaiane Sesquiterpenoids Isolated from Fruit Bodies of Edible Lactarius Species. Food Chem. Toxicol., 27, 393 (1989).CrossRefGoogle Scholar
  168. 168.
    Anke, H., and O. Sterner: Comparison of the Antimicrobial and Cytotoxic Activities of Twenty Unsaturated Sesquiterpene Dialdehydes from Plants and Mushrooms. Planta Medica, 57, 344 (1991).CrossRefGoogle Scholar
  169. 169.
    Gianetti, B., B. Steffan, and W. Steglich: Antibiotics from Basidiomycetes. Part 23. Merulidial, an Isolactarane Derivative from Merulius tremellosus. Tetrahedron, 42, 3579 (1986).CrossRefGoogle Scholar
  170. 170.
    Daniewski, W.M., M. Gumulka, D. Przesmycka, K. Ptaszynska, E. Bloszyk, and B. Drozdz: Sesquiterpenes of Lactarius Origin, Antifeedant Structure-Activity Relationship. Phytochemistry, 38, 1161 (1995).CrossRefGoogle Scholar
  171. 171.
    Froborg, J., G. Magnusson, and S. Thoren: Fungal Extractives. IX. Synthesis of the Velleral Skeleton and a Total Synthesis of Pyrovellerolactone. J. Org. Chem., 40, 1595 (1975).CrossRefGoogle Scholar
  172. 172.
    Gawronski, J.K., A. Oeveren, H. Deen, C.W. Leung, and B.L. Feringa: Simple Circular Dichroic Method for the Determination of Absolute Configuration of 5-Substituted 2(5H)-Furanones. J. Org. Chem., 61, 1513 (1996).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • W. M. Daniewski
    • 1
  • G. Vidari
    • 2
  1. 1.Institute of Organic ChemistryPolish Academy of SciencesWarsawPoland
  2. 2.Department of Organic ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations