Advertisement

Condensed Tannins

  • D. Ferreira
  • E. V. Brandt
  • J. Coetzee
  • E. Malan
Chapter
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 77)

Abstract

The condensed tannins (syn. polymeric proanthocyanidins) represent a major group of phenolic compounds in woody and some herbaceous plants (1–3). Their exceptional concentrations in the barks and heartwoods of a variety of tree species have resulted in their commercial extraction with the initial objective of applying the extracts in leather manufacture (4). Essentially all of their biological significance, e.g. the protection of plants from insects, diseases and herbivores, and most of the current, e.g. leather manufacture, and also most promising new uses, e.g. pharmaceuticals or wood preservatives, rest on their complexation with other biopolymers like proteins and carbohydrates, or meta1 ions (>5, 6). Increasing attention has thus been directed to understanding their conformation and conformational flexibility (7–20) in order to explain their biological activity and to provide a basis for further development of uses for these renewable phenolic compounds.

Keywords

Condensed Tannin Absolute Configuration Conformational Analysis Biomimetic Synthesis Leather Manufacture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Porter, L. J.: Flavans and Proanthocyanidins. In: The Flavonoids. Advances in Research since 1980. (J.B Harborne, ed.), p. 21. London, Chapman and Hall. 1988; Porter, LJ.: Flavans and Proanthocyanidins. In: The Flavonoids. Advances in Research since 1986 (J.B. Harborne, ed.), p. 23. London, Chapman and Hall, 1994.Google Scholar
  2. 2.
    Hemingway, R.W.: Biflavonoids and Proanthocyanidins. In: Natural Products of Woody Plants I (J.W. Rowe, ed.), p. 571. Berlin, Springer-Verlag, 1989.Google Scholar
  3. 3.
    Ferreira, D., and R. Bekker: Oligomeric Proanthocyanidins: Naturally-occurring O-heterocycles. Nat. Prod. Rep., 13, 411 (1996).Google Scholar
  4. 4.
    Roux, D.G., and D. Ferreira: Structure and Function in the Biomimetic Synthesis of Linear, Angular and Branched Condensed Tannins. Pure & Appl. Chem., 54, 2465 (1982).Google Scholar
  5. 5.
    Hemingway, R.W., J.J. Karchesy, and S.J. Branham (eds.): Chemistry and Significance of Condensed Tannins, New York, Plenum Press, 1989.Google Scholar
  6. 6.
    Hemingway, R.W., P.E. Laks, and S.J. Branham (eds.): Plant Polyphenols: Synthesis, Properties, Significance, New York, Plenum Press, 1992.Google Scholar
  7. 7.
    Vishwanadhan, V.N., and W.L. Mattice: Assessment by Molecular Mechanics of the Preferred Conformations of the Sixteen C(4)-C(6) and C(4)-C(8) Linked Dimers of (+)-Catechin and (−)-Epicatechin with Axial or Equatorial Dihydroxyphenyl Sub-stituents at C(2). J. Chem. Soc, Perkin Trans. II, 739 (1987).Google Scholar
  8. 8.
    Bergman, W.R., M.D. Barkley, R.W. Hemingway, and W.L. Mattice: Heterogeneous Fluorescence Decay of (4→6)-and (4→8)-Linked Dimers of (+)-Catechin and (−)-Epicatechin as a Result of Rotational Isomerism. J. Am. Chem. Soc, 109, 6614 (1987).Google Scholar
  9. 9.
    Cho, D., LJ. Tian, L.J. Porter, R.W. Hemingway, and W.L. Mattice: Variations in the Heterogeneity of the Decay of the Fluorescence in Six Procyanidin Dimers. J. Am. Chem. Soc, 112, 4273 (1990).Google Scholar
  10. 10.
    Steynbero, J.P., E.V. Brandt, and D. Ferreira: Conformational Analysis of Oligo-meric Flavanoids. Part 1. 4-Arylflavan-3-ols. J. Chem. Soc, Perkin Trans. II, 1569 (1991).Google Scholar
  11. 11.
    Fronczec, F.R., R.W. Hemingway, G.W. Mcgraw, J.P. Steynberg, CA. Helfer, and W.L. Mattice: Crystal Structure, Conformational Analysis, and Molecular Dynamics of Tetra-O-methyl-(+)-catechin. Biopolymers, 33, 275 (1993).Google Scholar
  12. 12.
    Tobiason, F.L., F.R. Fronczec, J.P. Steynbero, E.C. Steynbero, and R.W. Hemingway: Crystal Structure, Conformational Analyses, and Charge Density Distributions for ent-Epifisetinidol: An Explanation for Regiospecific Electrophilic Aromatic Substitution of 5-Deoxyflavans. Tetrahedron, 49, 5927 (1993).Google Scholar
  13. 13.
    Steynberg, J.P., E.V. Brandt, M.J.H. Hoffmann, R.W. Hemingway, and D. Ferreira: Conformations of Proanthocyanidins. In: Plantpolyphenols: Synthesis, Properties, Significance (Hemingway, R.W., P.E. Laks, and S.J. Branham ed.), p. 501, New York, Plenum Press, 19Google Scholar
  14. 14.
    Steynberg, J.P., E.V. Brandt, D. Ferreira, CA. Helfer, W.L. Mattice, D. Gornik, and R.W. Hemingway: Conformational Analysis of Oligomeric Flavanoids. Part 2. Methyl Ether Acetate Derivatives of Profisetinidins. Magn. Reson. Chem., 33, 611 (1995).Google Scholar
  15. 15.
    Balas, L., J. Vercauteren, and M. Laquhrre: 2D NMR Structure Elucidation of Proanthocyanidins: The Special Case of the Catechin-(4α-8)-catechin-(4α-8)-cate-chin Trimer. Magn. Reson. Chem., 33, 85 (1995).Google Scholar
  16. 16.
    Vivas, N., Y. Glories, I. Pianet, B. Barbe, and M. Laquerre: A Complete Structural and Conformational Investigation of Procyanidin A2 Dimer. Tetrahedron Lett., 37, 2015 (1996).Google Scholar
  17. 17.
    Hemingway, R.W., F.L. Tobiason, G.W. Mcgraw, and J.P. Steynberg: Conformation and Complexation of Tannins: NMR Spectra and Molecular Search Modeling of Flavan-3-ols. Magn. Reson. Chem., 34, 424 (1996).Google Scholar
  18. 18.
    De Bruyne, T., L.A.C. Pieters, R.A. Dommisse, H. Kolodziej, V. Wray, T. Domke, and A.J. Vlietinck: Unambiguous Assignments of Free Dimeric Proanthocyanidin Phenols from 2D NMR. Phytochemistry, 43, 265 (1996).Google Scholar
  19. 19.
    Hatano, T., and R.W. Hemingway: Association of (+)-Catechin and Catechin-(4α→8)-catechin with Oligopeptides. Chem. Commun., 2537 (1996); Conformational Isomerism of Phenolic Procyanidins: Preferred Conformations in Organic Solvents and Water. J. Chem. Soc, Perkin Trans. II, 1035 (1997).Google Scholar
  20. 20.
    Khan, M.L., E. Haslam, and M.P. Williamson: Structure and Conformation of the Procyanidin B-2 Dimer. Magn. Reson. Chem., 35, 854 (1997).Google Scholar
  21. 21.
    Salah, N., N.J. Miller, G. Paranga, L. Tuburg, G.P. Bolwell, and C. Riceevans: Polyphenolic Flavanols as Scavengers of Aqueous-phase Radicals and as Chain-breaking Antioxidants. Arch. Biochem. Biophys, 322, 339 (1995).Google Scholar
  22. 22.
    Kanner, J., E.W. Frankel, R. Granit, B. German, and J.E. Kinsella: Natural Antioxidants in Grapes and Wine. J. Agric. Food Chem., 42, 64 (1994).Google Scholar
  23. 23.
    Fuhrman, B., A. Lavy, and M. Aviram: Consumption of Red Wine with Meals Reduces the Susceptibility of Human Plasma and Low-density Lipoprotein to Lipid-peroxidation. Am. J. Clin. Nutr., 61, 549 (1995).Google Scholar
  24. 24.
    Frankel, E.N., A.L. Waterhouse, and P.L. Teissedre: Principal Phenolic Phytochem-icals in Selected Californian Wines and their Antioxidant Activity in Inhibiting Oxidation of Low-density Lipoproteins. J. Agric. Food Chem., 43, 890 (1995).Google Scholar
  25. 25.
    Frankel, E.N., J. Kanner, J.B. German, E. Parks, and J.E. Kinsella: Inhibition of Oxidation of Human Low-density Lipoprotein by Phenolic Substances in Red Wine. Lancet, 341, 454 (1993).Google Scholar
  26. 26.
    Ruf, J.C, J.L. Berger, and S. Renaud: Platelet Rebound Effect of Alcohol-withdrawal and Wine Drinking in Rats—Relation to Tannins and Lipid-peroxidation. Arterios-cler. Thromb. Vase. Biol., 15, 140 (1995).Google Scholar
  27. 27.
    Roux, D.G., and D. Ferreira: The Direct Biomimetic Synthesis, Structure and Absolute Configuration of Angular and Linear Condensed Tannins. Fortschr. Chem. organ. Naturstoffe, 41, 47 (1982).Google Scholar
  28. 28.
    Ferreira D.J.P.Steynberg D.G. Rouxand E.V. Brandt: Diversity of Structure and Function in Oligomeric Flavanoids. Tetrahedron 48 1743 (1992).Google Scholar
  29. 29.
    Ferreira D. J.P. Steynberg J.F.W. Burger and B.C.B. Bezuidenhoudt: Synthesis and Base-catalyzed Transformations of Proanthocyanidins. In: Recent Advances in Phytochemistry. (Stafford H.A. and R.K. Ibrahim eds.) p. 255. New York Plenum Press 1992.Google Scholar
  30. 30.
    Drewes S.E. D.G. Roux S.H. Eggers and J. Feeney: Three Diastereomeric 46-Linked Bileucofisetinidins from the Heartwood of Acacia mearnsii. J. Chem. Soc. (C) 1217 (1967).Google Scholar
  31. 31.
    Drewes S.E. D.G. Roux H.M. Saayman S.H. Eggers and J. Feeney: Some Stereochemically Identical Biflavanols from the Bark Tannins of Acacia mearnsii. J. Chem. Soc. (C) 1302 (1967).Google Scholar
  32. 32.
    Dupreez I.C., A.C. Rowan, D.G. Roux, and J. Feeney: Hindered Rotation about the sp2–sp3 Hybridized C-C Bond Between Flavanoid Units in Condensed Tannins. Chem. Commun., 315 (1971).Google Scholar
  33. 33.
    Fletcher, A.C., L.J. Porter, and E. Haslam: Hindered Rotation and Helical Structures in Natural Procyanidins. J. Chem. Soc, Chem. Commun., 627 (1976).Google Scholar
  34. 34.
    Fletcher A.C., LJ. Porter, E. Haslam, and RJ. Gupta: Plant Proanthocyanidins. Part 3. Conformational and Conngurational Studies of Natural Procyanidins. J. Chem. Soc Perkin Trans. 1 1628 (1977).Google Scholar
  35. 35.
    Brown B.R. and M.R. Shaw: Reactions of Flavonoids and Condensed Tannins with Sulphur Nucleophiles. J. Chem. Soc Perkin Trans. 1 2036 (1974).Google Scholar
  36. 36.
    Porter L.J. R.Y. Wong M. Benson B.G. Chan V.N. Vishwanadhan R.D. Gandour and W.L. Mattice: Conformational Analysis of Flavans. 1H NMR and Molecular Mechanical (MM2) Studies of the Benzopyran Ring of 3′4′57-Tetrahydroxyfiavan-3-ols: The Crystal and Molecular Structure of the Procyanidin: (2R3S4R)-3′4′57-Tetramethoxy-4-(246-trimethoxyphenyl)-flavan-3-ol. J. Chem. Res. (M) 830; (S) 86 (1986).Google Scholar
  37. 37.
    Malan J.C.S. J.A. Steenkamr D.A. Young and D. Ferreira: Oligomeric Flavanoids. Part 13. Synthesis of Profisetinidins Based on (−)-Robinetinidol and (+)-Epifiseti-nidol. Tetrahedron 45 7859 (1989).Google Scholar
  38. 38.
    Coetzee J. J.P. Steynberg P.J. Steynberg E.V. Brandt and D. Ferreira: Oligomeric Flavanoids. Part 18. Dimeric Prorobinetinidins from Robinia pseudacacia. Tetrahedron 51 2339 (1995).Google Scholar
  39. 39.
    Haslam, E.: Biogenetically Patterned Synthesis of Procyanidins. J. Chem. Soc, Chem. Commun., 594 (1974).Google Scholar
  40. 40.
    Botha, J.J., D. Ferreira, and D.G.Roux: Condensed Tannins: Direct Synthesis, Structure, and Absolute Configuration of Four Biflavanoids from Black Wattle Bark (‘Mimosa’) Extract. J. Chem. Soc, Chem. Commun., 700 (1978); Synthesis of Condensed Tannins. Part 4. A Direct Biomimetic Approach to [4,6J-and [4,8]-Biflavanoids. J. Chem. Soc, Perkin Trans. 1, 1235 (1981).Google Scholar
  41. 41.
    Steynberg, P.J., J.P. Steynberg, E.V. Brandt, D. Ferreira, and R.W. Hemingway: Oligomeric Flavanoids. Part 26. Structure and Synthesis of the First Profisetinidins with Epifisetinidol Constituent Units. J. Chem. Soc, Perkin Trans. 1, 1943 (1997).Google Scholar
  42. 42.
    Malan, J.C.S., D.A. Young, J.P. Steynberg, and D. Ferreira: Oligomeric Flavanoids. Part 10. Structure and Synthesis of the First Tetrahydropyrano[2,3-g]chromenes Related to (4,6)-Bis-(−)-fisetinidol Profisetinidins. J. Chem. Soc., Perkin Trans. 1, 227 (1990).Google Scholar
  43. 43.
    Foo, L.Y.: A Novel Pyrogallol A-ring Proanthocyanidin Dimer from Acacia mela-noxylon. J. Chem. Soc, Chem. Commun., 236 (1986).Google Scholar
  44. 44.
    Malan, E., and A. Sireeparsad: The Structure and Synthesis of the First Dimeric Proteracacinidins from Acacia galpinii. Phytochemistry, 38, 237 (1995).Google Scholar
  45. 45.
    Clark-lewis, J.W.: Flavan Derivatives. XXI. Nuclear Magnetic Resonance Spectra, Configuration, and Conformation of Flavan Derivatives. Aust. J. Chem., 21, 2059 (1968).Google Scholar
  46. 46.
    Vander Westhuizen, J.H., D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins. Part 2. Synthesis by Photolytic Rearrangement, Stereochemistry and Circular Dichroism of the First 2,3-cis-3,4-ds-4-Arylflavan-3-ols. J. Chem. Soc, Perkin Trans. 1, 1220 (1981).Google Scholar
  47. 47.
    Steynberg, J.P., J.F.W. Burger, D.A. Young, E.V. Brandt, J.A. Steenkamp, and D. Ferreira: Oligomeric Flavanoids. Part 4. Base-catalyzed Conversions of (−)-Fise-tinidol-(+)-catechin Profisetinidins with 2,3-trans-3,4-cis-Flavan-3-ol Constituent Units. J. Chem. Soc, Perkin Trans. 1, 3331 (1988).Google Scholar
  48. 48.
    Botha, J.J., D.A. Young, D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins, Part 1. Stereoselective and Stereospecific Synthesis of Optically Pure 4-Arylflavan-3-ols, and Assessment of Their Absolute Stereochemistry at C-4 by Means of Circular Dichroism. J. Chem. Soc, Perkin Trans. 1, 1213 (1981).Google Scholar
  49. 49.
    Barrett, M.W., W. Klyne, P.M. Scopes, A.C. Fletcher, L.J. Porter, and E. Haslam: Plant Proanthocyanidins. Part 6. Chiroptical Studies. Part 95. Circular Dichroism of Procyanidins. J. Chem. Soc, Perkin Trans. 1, 2375 (1979).Google Scholar
  50. 50.
    De Angelis, G.G., and W.C. Wildman: Circular Dichroism Studies–1. A Quadrant Rule for the Optically Active Aromatic Chromophore in Rigid Polycyclic Systems. Tetrahedron, 25, 5099 (1968).Google Scholar
  51. 51.
    Young, D.A., A. Cronjé, A.L. Botes, D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins. Part 14. Biflavanoids as Synthons. The Acid-induced ‘Phloba-phene’ Reaction. J. Chem. Soc, Perkin Trans. 1, 2521 (1985).Google Scholar
  52. 52.
    Steynberg, P.J., RJ.J. Nej, H. Van Rensburg, B.C.B. Bezuidenhoudt, and D. Ferreira: Oligomeric Flavanoids. Part 27. Interflavanyl Bond Formation in Procyanidins under Neutral Conditions. Tetrahedron, 54, 8153 (1998).Google Scholar
  53. 53.
    Trost, B.M., and E. Murayama: Dimethyl(methylthio)sulfonium Fluoroborate. A Chemoselective Initiator for Thionium Induced Cyclizations. J. Am. Chem. Soc, 103, 6529 (1981).Google Scholar
  54. 54.
    Trost, B.M., and T. Sato: Dimethyl(methylthio)sulfonium Tetrafluoroborate Initiated Organometallic Additions to and Macrocyclizations of Thioketals. J. Am. Chem. Soc, 107, 719 (1985).Google Scholar
  55. 55.
    Barrett, A.G.M., B.C.B. Bezuidenhoudt, A.R. Howell, A.C. Lee, and M.A. Russel}: Redox Glycosylation via Thionoester Intermediates. J. Org. Chem., 54, 2275 (1989).Google Scholar
  56. 56.
    Delcour, J.A., D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins. Part 9. The Condensation Sequence of Leucocyanidin with (+)-Catechin and with the Resultant Procyanidins. J. Chem. Soc, Perkin Trans. 1, 1711 (1983).Google Scholar
  57. 57.
    Drewes, S.E., and A.H. Ilsley: Dioxan-linked Biflavanoid from the Heartwood of Acacia mearnsii. J. Chem. Soc. (C), 1302 (1969).Google Scholar
  58. 58.
    Young, D.A., D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins. Part 10. ‘Dioxan-linked’ Profisetinidins. J. Chem. Soc, Perkin Trans. 1, 2031 (1983).Google Scholar
  59. 59.
    Foo, L.Y.: Isolation of [4-O-4]linked Biflavanoids form Acacia melanoxylon. First Examples of a New Class of Single Ether Linked Proanthocyanidin Dimers. J. Chem. Soc, Chem. Commun., 1505 (1989).Google Scholar
  60. 60.
    Malan, E., A. Sireeparsad, J.F.W. Burger, and D. Ferreira: A Novel Doubly-linked Proteracacinidin Analogue from Acacia caffra. Tetrahedron Lett., 35, 7415 (1994).Google Scholar
  61. 61.
    Coetzee, J., E. Malan, and D. Ferreira: Oligomeric Flavanoids. Part 28. Structure and Synthesis of Ether-linked [4-O-3]Bis-teracacinidins, a Novel Class of Naturally Occurring Proanthocyanidins. J. Chem. Res. (M), 2287; (S), 526 (1998).Google Scholar
  62. 62.
    Coetzee, J., E. Malan, and D. Ferreira: Oligomeric Flavanoids. Part 29. Structure and Synthesis of Novel Ether-linked [4-O-4]Bis-teracacinidins. Tetrahedron, 54,9153 (1998).Google Scholar
  63. 63.
    Young, D.A., D. Ferreira, D.G. Roux, and W.E. Hull: Synthesis of Condensed Tannins. Part 15. Structure of Natural ‘Angular’ Profisetinidin Tetraflavanoids. Asymmetric Induction During Synthesis. J. Chem. Soc, Perkin Trans. 1, 2529 (1985).Google Scholar
  64. 64.
    Young, D.A., H. Kolodziej, D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins. Part 16. Stereochemical Differentiation of the First’ Angular’ (2S,3R)-Profisetinidin Tetraflavanoids from Rhus lancea (Karee) and the Varying Dynamic Behaviour of Their Derivatives. J. Chem. Soc, Perkin Trans. 1, 2537 (1985).Google Scholar
  65. 65.
    Young, D.A., D. Ferreira, and D.G. Roux: Stereochemistry and Dynamic Behaviour of Some Synthetic ‘Angular’ Tetraflavanoid Derivatives. J. Polym. Sci., Part A: Polym. Chem., 24, 835 (1986).Google Scholar
  66. 66.
    Brandt, E.V., D.A. Young, H. Kolodziej, D. Ferreira, and D.G. Roux: Cycloconformations of Two Tetraflavanoid Condensed Tannins. J. Chem. Soc, Chem. Commun., 913 (1986).Google Scholar
  67. 67.
    Brandt, E.V., D.A. Young, D. Ferreira, and D.G. Roux: Synthesis of Condensed Tannins. Part 20. Cycloconformations and Conformational Stability Among Derivatives of ‘Angular’ Tetraflavanoid Profisetinidins. J. Chem. Soc, Perkin Trans. 1, 2353 (1987).Google Scholar
  68. 68.
    Malan, E., A. Sireeparsad, E. Swinny, and D. Ferreira: The Structure and Synthesis of a 7,8,4′-Trihydroxyflavan-epioritin dimer from Acacia caffra. Phytochemistry, 44, 529 (1997).Google Scholar
  69. 69.
    Hatano, T., A. Yamashita, T. Hashimoto, H. ito, N. Kubo, M. Yoshiyama, S. Shimura, Y. Itoh, T. Okuda, and T. Yoshida: Flavan Dimers with Lipase Inhibitory Activity from Cassia nomane. Phytochemistry, 46, 893 (1997).Google Scholar
  70. 70.
    Malan, E., E. Swinny, D. Ferreira, and PJ. Steynberg: The Structure and Synthesis of Proguibourtinidins from Cassia abbreviata. Phytochemistry, 41, 1209 (1996).Google Scholar
  71. 71.
    Pierre, M-C, C. Chéze, and J. Vercauteren: Deuterium Labeled Procyanidin Synthesis. Tetrahedron Lett., 38, 5639 (1997).Google Scholar
  72. 72.
    Yoneda, S., H. Kawamota, and F. Nakatsubo: Synthesis of High Molecular Mass Condensed Tannin by Cationic Polymerization of Flavan-3,4-carbonate. J. Chem. Soc, Perkin Trans. 1, 1025 (1997).Google Scholar
  73. 73.
    Morimoto, S., G. Nonaka, and I. Nishioka: Tannins and Related Compounds. LIX. Aesculitannins, Novel Proanthocyanidins with Doubly-bonded Structures from Aes-culus hippocastanum L. Chem. Pharm. Bull., 35, 4717 (1987).Google Scholar
  74. 74.
    Cronjé, A., J.F.W. Burger, E.V. Brandt, H. Kolodziej, and D. Ferreira: Assessment of 3,4-trans-and 3,4-Cis Relative Configuration in the A-series of (4,8)-Linked Proanthocyanidins. Tetrahedron Lett. 31, 3789 (1990).Google Scholar
  75. 75.
    Burger, J.F.W., H. Kolodziej, R.W. Hemingway, J.P. Steynberg, D.A. Young, and D. Ferreira: Oligomeric Flavanoids. Part 15. Base-catalyzed Pyran Rearrangements of Procyanidin B-2, and Evidence for the Oxidative Transformation of B-to A-type Proanthocyanidins. Tetrahedron, 46, 5733 (1990).Google Scholar
  76. 76.
    Cronjé, A., J.P. Steyinberg, E.V. Brandt, D.A. Young, and D. Ferreira: Oligomeric Flavanoids. Part 16. Novel Prorobinetinidins and the First A-type Proanthocyanidin with 5-Deoxy A-and a 3,4-Cis C-ring from the Maiden Investigation of Commercial Wattle Bark Extract. J. Chem. Soc, Perkin Trans. 1, 2467 (1993).Google Scholar
  77. 77.
    Kolodziej, H., D. Ferreira, G. Lemieré, T. De Bruyne, L. Pieters, and A.J. Vlietinck: On the Nomenclature of Oligoflavanoids with an A-type Unit. J. Nat. Prod., 56, 1199 (1993).Google Scholar
  78. 78.
    Musso, H.: In Oxidative Coupling of Phenols (Taylor, W.I., Battersby, A.R., eds.), p. 75. New York, Marcel Dekker, Inc. 1967.Google Scholar
  79. 79.
    Betts, M.J., B.R. Brown, P.E. Brown, and W.T. Pike: Degradation of Condensed Tannins: Structure of the Tannin from Common Heather. Chem. Commun., 1110 (1967).Google Scholar
  80. 80.
    Thompson, R.S., D. Jacques, E. Haslam, and R.J. Tanner: Plant Proanthocyanidins. Part 1. Introduction; the Isolation, Structure, and Distribution in Nature of Plant Procyanidins. J. Chem. Soc, Perkin Trans. 1, 1387 (1972).Google Scholar
  81. 81.
    Foo, L.Y., and LJ. Porter: Prodelphinidin Polymers: Definition of Structural Units. J. Chem. Soc, Perkin Trans. 1, 1186 (1978).Google Scholar
  82. 82.
    Steynberg, P.J., J.P. Steynberg, B.C.B. Bezuidenhoudt, and D. Ferreira: Cleavage of the Interflavanyl Bond in 5-Deoxy (A-ring) proanthocyanidins. J. Chem. Soc, Chem. Commun., 31 (1995).Google Scholar
  83. 83.
    Steynberg, P.J., J.P. Steynberg, B.C.B. Bezuidenhoudt, and D. Ferreira: Oligomeric Flavanoids. Part 19. Reductive Cleavage of the Interflavanyl Bond in Proanthocyanidins. J. Chem. Soc, Perkin Trans. 1, 3005 (1995).Google Scholar
  84. 84.
    Lane, CF.: Sodium Cyanoborohydride, a Highly Selective Reducing Agent for Organic Functional Groups. Synthesis, (3), 135 (1975).Google Scholar
  85. 55.
    Mcgraw, G.W., and R.W. Hemingway: Electrophilic Aromatic Substitution of Cate-chin. Bromination and Benzylation. J. Chem. Soc, Perkin Trans. 1, 973 (1982).Google Scholar
  86. 86.
    Brown, A.G., W.B. Eyton, A. Holmes, and W.D. Ollis: Identification of the Thearubigenins as Polymeric Proanthocyanidins. Nature, 221, 742 (1969).Google Scholar
  87. 87.
    Baert, J.E., T.H. Lilley, and E. Haslam: Polyphenol Interactions. Part 2. Covalent Binding of Procyanidins to Proteins During Acid-catalyzed Decomposition: Observations on Some Polymeric Proanthocyanidins. J. Chem. Soc, Perkin Trans. 2, 1439 (1985).Google Scholar
  88. 88.
    Steynberg, P.J., J.F.W. Burger, B.C.B. Bezuidenhoudt, J.P. Steynberg, M.S. Van Dyk, and D. Ferreira: The First Natural Condensed Tannins with (−)-Catechin ‘Terminal’ Units. Tetrahedron Lett., 31, 2059 (1990).Google Scholar
  89. 89.
    Delle Monache, F., F. Ferrari, A. Poce-tucci, and G.B. Marini-Bettollo: Catechins with (+)-Epi-configuration in Nature. Phytochemistry, 11, 2333 (1972).Google Scholar
  90. 90.
    Jacques, D., E. Haslam, G.R. Bedford, and G. Greatbanks: Plant Proanthocyanidins. Part II. Proanthocyanidin-A2 and its Derivatives. J. Chem. Soc, Perkin Trans. 1, 2663 (1974).Google Scholar
  91. 91.
    Kolodziej, H., M.J. Sakar, J.F.W. Burger, R. Engelshowe, and D. Ferreira: A-Type Proanthocyanidins from Prunus spinosa. Phytochemistry, 30, 2042 (1991).Google Scholar
  92. 92.
    Gonzalez, A.G., A.C. Irizar, A.G. Ravelo, and M.F. Fernandez: Type-A Proanthocyanidins from Prunus spinosa. Phytochemistry, 31, 1432 (1992).Google Scholar
  93. 93.
    Balde, A.M., T. De Bruyn, L. Pieters, H. Kolodziej, D. Van den Berghe, M. Claeys, and A. Vlietinck: Oligomeric Proanthocyanidins Possessing a Doubly Linked Structure from Pavetta owariensis. Phytochemistry, 38, 719 (1995).Google Scholar
  94. 94.
    Balde, A.M., T. De Bruyne, L. Pieters, H. Kolodziej, D. Van den Berghe, M. Claeys, and A. Vlietinck: Tetrameric Proanthocyanidins Containing a Double Inter-flavanoid (A-Type) Linkage from Pavetta owariensis. Phytochemistry, 40, 933 (1995).Google Scholar
  95. 95.
    Steynbero, P.J., A. Cronjé, J.P. Steynberg, B.C.B. Bezuidenhoudt, E.V. Brandt, and D. Ferreira: Oligomeric Flavanoids. Part 25. Cleavage of the Acetal Functionality in A-Type Proanthocyanidins. Tetrahedron, 53, 2591 (1997).Google Scholar
  96. 96.
    Karchesy, J.J., and R.W. Hemingway: Condensed Tannins: (4ß→8; 2ß→O→7)-Linked Procyanidins in Arachis hypogea L. J. Agric. Food Chem., 34, 966 (1986).Google Scholar
  97. 97.
    Sears, K.D., R.L. Casebier, H.L. Hergert, G.H. Stout, and L.E. Mccandlish: The Structure of Catechinic Acid. A Base Rearrangement Product of Catechin. J. Org Chem., 39, 3244 (1974).Google Scholar
  98. 98.
    Herrick, EH.: Chemistry and Utilization of Western Hemlock Bark Extractives. J. Agric. Food Chem. 28, 228 (1980).Google Scholar
  99. 99.
    Kiatgrajai, P., J.D. Wellons, L. Gollob, and J.D. White: Kinetics of Epimerization of (+)-Catechin and its Rearrangement to Catechinic Acid. J. Org. Chem., 47, 2910 (1982).Google Scholar
  100. 100.
    Courbat, P., A. Weith, A. Albert, and A. Pelter: Contribution to the Study of the Behaviour of Catechin in Alkaline Medium. Helv. Chim. Acta, 60, 1665 (1977).Google Scholar
  101. 101.
    Foo, L.Y., and L.J. Porter: Synthesis and Conformation of Procyanidin Diastereo-mers. J. Chem. Soc, Perkin Trans. 1, 1535 (1985).Google Scholar
  102. 102.
    Freudenberg, K., and L. Purrmann: Raumisomere Catechine, III. Chem. Ber., 56, 1185 (1923).Google Scholar
  103. 103.
    Freudenberg, K., and L. Purrmann: Raumisomere Catechine, IV. Liebigs Ann. Chem., 437, 274 (1924).Google Scholar
  104. 104.
    Kennedy, J.A., M.H.G. Munro, H.K.J. Powell, L.J. Porter, and L.Y. Foo: The Protonation Reactions of Catechin, Epicatechin and Related Compounds. Aust. J. Chem., 37, 885 (1984).Google Scholar
  105. 105.
    Mehta, P.P., and W.B. Whalley: The Stereochemistry of Some Catechin Derivatives. J. Chem. Soc., 5327 (1963).Google Scholar
  106. 106.
    Hemingway, R.W., and L.Y. Foo: Condensed Tannins: Quinone-methide Intermediates in Procyanidin Synthesis. J. Chem. Soc, Chem. Commun., 1035 (1983).Google Scholar
  107. 707.
    Foo, L.Y, and R.W. Hemingway: Condensed Tannins: Synthesis of the First ‘Branched’ Procyanidin Trimer. J. Chem. Soc, Chem. Commun., 85 (1984).Google Scholar
  108. 108.
    Hemingway, R.W., and P.E. Laks: Condensed Tannins: A Proposed Route to 2R,3R-(2,3-cis)-Proanthocyanidins, J. Chem. Soc, Chem. Commun., 746 (1985).Google Scholar
  109. 109.
    Laks, P.E., and R.W. Hemingway: Condensed Tannins: Base-catalyzed Reactions of Polymeric Procyanidins with Toluene-a-thiol. Lability of the Interfiavonoid Bond and Pyran Ring. J. Chem. Soc, Perkin Trans. 1, 465 (1987).Google Scholar
  110. 110.
    Laks, P.E., R.W. Hemingway, and A.H. Conner: Condensed Tannins. Base-catalyzed Reactions of Polymeric Procyandins with Phloroglucinol: Intramolecular Rearrangements. J. Chem. Soc, Perkin Trans. 1, 1875 (1987).Google Scholar
  111. 111.
    Steenkamp, J.A., J.P. Steynberg, E.V. Brandt, D. Ferreira, and D.G. Roux: Phlo-batannins: A Novel Class of Ring-isomerized Condensed Tannins. J. Chem. Soc, Chem. Commun., 1678 (1985).Google Scholar
  112. 112.
    Steynberg, J.P., D.A. Young, J.F.W. Burger, D. Ferreira, and D.G. Roux: Phloba-tannins via Facile Ring Isomerization of Profisetinidin and Prorobinetinidin Condensed Tannin Units. J. Chem. Soc, Chem. Commun., 1013 (1986).Google Scholar
  113. 113.
    Malan, J.C.S., J.A. Steenkamp, J.P. Steynberg, D.A. Young, E.V. Brandt, and D. Ferreira: Oligomeric Flavanoids. Part 8. The First Profisetinidins and Proguibourti-nidins Based on 8-C Substituted (—)-Fisetinidol Units and Related C-ring Isomerized Analogues. J. Chera. Soc., Perkin Trans. 1, 209 (1990).Google Scholar
  114. 114.
    Steynberg, J.P, J.A. Steenkamp, J.F.W. Burger, A.D. Young, and D. Ferreira: Oligomeric Flavanoids. Part 11. Structure and Synthesis of the First Phlobatannins Related to (4α,6:4α,8)-bis-(—)-Fisetinidol-catechin Profisetinidin Triflavanoids. J. Chem. Soc, Perkin Trans. 1, 235 (1990).Google Scholar
  115. 115.
    Steynberg, J.P, J.F.W. Burger, A. Cronjé, S.L. Bonnet, J.C.S. Malan, D.A. Young, and D. Ferreira: Oligomeric Flavanoids. Part 12. Structure and Synthesis of Phlobatannins Related to (—)-Fisetinidol-(—)-epicatechin Profisetinidins. Phyto-chemistry, 29, 2979 (1990).Google Scholar
  116. 116.
    Bonnet, S.L., J.P. Steynberg, B.C.B. Bezuidenhoudt, CM. Saunders, and D. Ferreira: Oligomeric Flavanoids. Part 20. Structure and Synthesis of Phlobatannins Related to the (4ß,6:4α,8)-Bis-fisetinidol-catechin Profisetinidin Trifiavanoid. Phy-tochemistry, 43, 215 (1996).Google Scholar
  117. 117.
    Bonnet, S.L., J.P. Steynberg, B.C.B. Bezuidenhoudt, CM. Saunders, and D. Ferreira: Oligomeric Flavanoids. Part 21. Structure and Synthesis of Phlobatannins Related to the (4ß,6:4ß,8)-Bis-fisetinidol-catechin Profisetinidin Trifiavanoid. Phy-tochemistry, 43, 229 (1996).Google Scholar
  118. 118.
    Bonnet, S.L., J.P. Steynberg, B.C.B. Bezuidenhoudt, CM. Saunders, and D. Ferreira: Oligomeric Flavanoids. Part 22. Structure and Synthesis of Phlobatannins Related to the (4α,6:4ß,8)-Bis-fisetinidol-catechin Profisetinidin Trifiavanoid. Phy-tochemistry, 43, 241 (1996).Google Scholar
  119. 119.
    Bonnet, S.L., J.P. Steynberg, B.C.B. Bezuidenhoudt, CM. Saunders, and D. Ferreira: Oligomeric Flavanoids. Part 23. Structure and Synthesis of Phlobatannins Related to Bis-fisetinidol-epicatechin Profisetinidin Trifiavanoid. Phytochemistry, 43, 253 (1996).Google Scholar
  120. 120.
    Steynberg, J.P, J.F.W. Burger, D.A. Young, E.V. Brandt, J.A. Steenkamp, D. Ferreira: Oligomeric Flavanoids. Part 3. Structure and Synthesis of Phlobatannins Related to (—)-Fisetinidol-(4α,6)-and (4α,8)-catechin Profisetinidins. J. Chem. Soc, Perkin Trans. 1, 3323 (1988).Google Scholar
  121. 121.
    Steynberg, J.P., J.F.W. Burger, D.A. Youngc, E.V. Brandt, and D. Ferreira: Oligomeric Flavanoids. Part 6. Evidence Supporting the Inversion of Absolute Configuration at 3-C Associated with Base-catalyzed A-/B-ring Interchange of Precursors Having 2,3-trens-3,4-cis-flavan-3-ol Constituent Units. Heterocycles, 28,923 (1989).Google Scholar
  122. 122.
    Steynberg, J.P, B.C.B. Bezuidenhoudt, J.F.W. Burger, D.A. Young, and D. Ferreira: Novel Base-catalyzed Pyran Rearrangements of Procyanidins. J. Chem. Soc, Perkin Trans. 1, 203 (1990).Google Scholar
  123. 123.
    Saunders, CM., S.L. Bonnet, J.P. Steynberg, and D. Ferreira: Oligomeric Flavanoids Part 24. Controlled Biomimetic Synthesis of Profisetinidin Trifiavanoid Related Phlobatannins. Tetrahedron, 52, 6003 (1996).Google Scholar
  124. 124.
    Ohara, S., and R.W. Hemingway: Condensed Tannins: The Formation of a Diaryl-propan-2-ol Catechinic Acid Dimer from Base-catalyzed Reactions of (+)-Catechin. J. Wood Chem. Technol., 11, 195 (1991).Google Scholar
  125. 125.
    Pizzi, A., E. Orovan, and F.W. Cameron: Cold-set Tannin-resorcinol-formaldehyde Adhesives of Lower Resorcinol Content. Holzforschung, 46, 67 (1988).Google Scholar
  126. 126.
    Mcgraw, G.W., J.P. Steynberg, and R.W. Hemingway: Condensed Tannins: A Novel Rearrangement of Procyanidins and Prodelphinidins in Thiolytic Cleavage. Tetrahedron Lett., 34, 987 (1993).Google Scholar
  127. 127.
    Steynberg, P.J., J.P. Steynberg, R.W. Hemingway, D. Ferreira, and G.W. Mcgraw: Acid-catalyzed Rearrangements of Flavan-4-phloroglucinol Derivatives to Novel 6-Hydroxyphenyl-6a, 1 lb-dihydro-6H-[lJ-benzofuro[2,3-f]chromenes and Hydroxy-phenyl-3,2′-spirobidihydro[l]benzofurans. J. Chem. Soc, Perkin Trans. 1, 2395 (1997).Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • D. Ferreira
    • 1
  • E. V. Brandt
    • 2
  • J. Coetzee
    • 2
  • E. Malan
    • 2
  1. 1.National Center for the Development of Natural Products, Research Institute of Pharmaceutical Sciences, School of PharmacyThe University of MississippiUniversityUSA
  2. 2.Department of ChemistryUniversity of the Orange Free StateBloemfonteinSouth Africa

Personalised recommendations