Advertisement

Electron Velocity in Sub-50-Nm Channel Mosfets

  • Dimitri A. Antoniadis
  • Ihsan J. Djomehri
  • Anthony Lochtefeld Microsystems

Abstract

Inverse modeling of state-of-the-art NMOSFETs is used to investigate electron transport models and in particular to extract the effective velocity of electron injection from source to channel. It is found that this velocity is less than 50% of the maximum possible velocity, i.e. the thermal velocity of electrons in the source. Based on the Landauer formulation, as adapted by Lundstrom to silicon MOSFETs this indicates that modern NMOSFETs are quite far from their ballistic transport limit and therefore their current is still limited by momentum scattering as manifested in the electron mobility. Investigation of mobility in those transistors reveals that it is reduced with channel length, most likely due to Coulomb scattering by the ionized dopant atoms in the source and drain halos that are necessary for well-tempered ultra-short-channel MOSFETs, and possibly remote scattering by the source dopants.

Keywords

Channel Length Inverse Modeling Energy Balance Model Ballistic Limit Coulomb Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z. Lee et al., IEDM proceedings, p. 683, 1997.Google Scholar
  2. [2]
    M. J. Van Dort et al., Solid-State Electronics, Vol. 37 No. 3, 1994, p 411.CrossRefGoogle Scholar
  3. [3]
    S. A. Mujtaba et al., NUPAD V, Honolulu, Hawaii, June 5–6, 1994Google Scholar
  4. [4]
    A. Forghieri et al.,IEEE Trans. CAD, Vol. 7 No. 2, Feb. 1988.Google Scholar
  5. [5]
    S. M. Sze, Physics of Semiconductor Devices, 2nd ed.(New York:John Wiley & Sons, 1981).Google Scholar
  6. [6]
    M. V. Fischetti,IEEE TED, Vol. 38, 1991, p 634.CrossRefGoogle Scholar
  7. [7]
    G. Shahidi, D. Antoniadis, H. Smith, IEEE EDL, Feb. 1988, p 94–96.Google Scholar
  8. [8]
    F. Assad, Z. Ren, S. Datta, M. Lundstrom, P. Bendix, 1999 IEDM Digest, p 547–550.Google Scholar
  9. [9]
    T. Mizuno, R. Ohba,Journal of Applied Physics Vol. 82 No. 10, Nov. 1997, p 5235–5240.CrossRefGoogle Scholar
  10. [10]
    A. Lochtefeld and D. A. Antoniadis, IEEE EDL, Vol. 22 No. 2, Feb. 2001, p 95.CrossRefGoogle Scholar
  11. [11]
    S. Y. Chou and D. A. Antoniadis, IEEE TED-34, 1987, p 448.Google Scholar
  12. [12]
    H. Hu, J. Jacobs, L. Su, D. Antoniadis, IEEE TED, April 1995, p 669–677.Google Scholar
  13. [13]
    Y. Taur, C. Wann, D. Frank, 1998 IEDM Technical Digest, p 789–792.Google Scholar
  14. [14]
    M. V. Fischetti and S. E. Laux,J. of Applied Physics, Vol. 89 No. 2, Jan. 2001, p 1205.CrossRefGoogle Scholar
  15. [15]
    K. Rim, J. Hoyt, J. Gibbons, IEEE TED, July 2000, p 1406–1415.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Dimitri A. Antoniadis
    • 1
  • Ihsan J. Djomehri
    • 1
  • Anthony Lochtefeld Microsystems
    • 1
  1. 1.Technology Laboratories Massachusetts Institute of Technology CambridgeMassachusettsUSA

Personalised recommendations