Advertisement

Singularity Analysis of Spherical Parallel Manipulators

  • H. R. M. Daniali
  • P. J. Zsombor-Murray
  • J. Angeles
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 361)

Abstract

The Jacobian matrices of two spherical manipulators of the parallel type, with three degrees of freedom, are derived. One is a spherical 3-legged parallel manipulator; the other, a spherical double-triangular manipulator. A general classification of parallel-manipulator singularities into three groups, which relies on the properties of the Jacobian matrices of the manipulator, is described. Finally, the three types of singularity are identified for the two manipulators.

Keywords

Parallel Manipulator Kinematic Chain Jacobian Matrice Inverse Kinematic Problem Singular Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J.: 1988, Rational Kinematics, Springer-Verlag, New Yory.CrossRefMATHGoogle Scholar
  2. Angeles, J., Anderson, K., Cyril, X. and Chen, B.: 1988, ‘The Kinematic Inversion of Robot Manipulators in the Presence of Singularities’, ASME J. of Mechanisms, Transmissions, and Automation in Design vol. 110, pp. 246–254.Google Scholar
  3. Gosselin, C. and Angeles, J.: 1990, ‘Singularity Analysis of Closed-Loop Kinematic Chains’, IEEE Transactions on Robotics And Automation vol. 6, No. 3, pp. 281–290.CrossRefGoogle Scholar
  4. Gosselin, C. M. and Sefrioui, J.: 1992, ‘Determination of the Singularity Loci of Spherical Three-Degree-of-Freedom Parallel Manipulators’, Proc. of the ASME Mechanisms Conf., Phoenix, pp. 329–335.Google Scholar
  5. Lai, Z. C. and Yang, D. C. H.: 1986, ‘A New Method for the Singularity Analysis of Simple Six-Link Manipulators’, Int. J. of Robotics Research vol. 5, No. 2, pp. 66–74.CrossRefGoogle Scholar
  6. Litvin, F. L., Yi, Z., Parenti-Castelli, V. and Innocenti, C.: 1986, ‘Singularities, Configurations, and Displacement Functions for Manipulators’, Int. J. of Robotics Research vol. 5, No. 2, pp. 52–65.CrossRefGoogle Scholar
  7. Ma, O. and Angeles, J.: 1992, ‘Architecture Singularities of Parallel Manipulators’, The Int. J. of Robotics and Automation vol. 7, No. 1, pp. 23–29.Google Scholar
  8. Merlet, J-P.: 1989, ‘Singular Configurations of Parallel Manipulators and Grassmann Geometry’. Int. J. of Robotics Research vol. 8, No. 5, pp. 45–56.CrossRefGoogle Scholar
  9. Mohammadi Daniali, H. R., Zsombor-Murray, P. J. and Angeles, J.: 1993, ‘On Singularities of Planar Parallel Manipulators’, Proc. ASME Conf. on Design Automation, Albuquerque, pp. 593–599.Google Scholar
  10. Sugimoto, K., Duffy, J. and Hunt, K. H.: 1982, ‘Special Configurations of Spatial Mechanisms and Robot Arms’, Mechanism and Machine Theory vol. 17, No. 2, pp. 119–132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • H. R. M. Daniali
    • 1
  • P. J. Zsombor-Murray
    • 1
  • J. Angeles
    • 1
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations