Skip to main content

Tumour Hypoxia and the Hypoxia-Inducible Transcription Factors: Key Players in Cancer Progression and Metastasis

  • Chapter
Tumor Cell Metabolism

Abstract

Solid tumours often display regions of low oxygenation, hypoxia. Tumour hypoxia is linked to cancer progression and poor patient outcome. The hypoxia-inducible transcription factors HIF1 and HIF2 are the main mediators of the hypoxic response inducing metabolic adaptation, survival signals and angiogenesis. Hypoxia and HIF signalling further contribute to malignant progression by promoting a cancer stem cell phenotype and epithelial-to-mesenchymal transition. HIF signalling thus links the intra-tumour microenvironment to cancer cell behaviour and disease development. Hypoxia and HIF signalling are largely confined to the tumour making them appealing therapy targets. However, the partially diverging roles of HIF1 and HIF2 and the various responses to hypoxia in different cells and settings pose challenges. This chapter will cover hypoxia and HIF signalling in relation to tumour progression and cross-links with some dominant signalling pathways in cancer including Notch and Wnt/beta-catenin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker T, Diez-Juan A, Aragones J, Tjwa M, Brusselmans K, Moons L et al (2005) Genetic evidence for a tumor suppressor role of HIF-2alpha. Cancer Cell 8(2):131–141

    CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T et al (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8(1):158–166

    PubMed Central  CAS  PubMed  Google Scholar 

  • An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392(6674):405–408

    CAS  PubMed  Google Scholar 

  • Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26

    CAS  PubMed  Google Scholar 

  • Anastasiadis AG, Ghafar MA, Salomon L, Vacherot F, Benedit P, Chen MW et al (2002) Human hormone-refractory prostate cancers can harbor mutations in the O(2)-dependent degradation domain of hypoxia inducible factor-1alpha (HIF-1alpha). J Cancer Res Clin Oncol 128(7):358–362

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    CAS  PubMed  Google Scholar 

  • Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62(24):7203–7206

    CAS  PubMed  Google Scholar 

  • Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ et al (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324(1):394–400

    CAS  PubMed  Google Scholar 

  • Baek JH, Jang JE, Kang CM, Chung HY, Kim ND, Kim KW (2000) Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 19(40):4621–4631

    CAS  PubMed  Google Scholar 

  • Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478(7369):399–403

    CAS  PubMed  Google Scholar 

  • Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ (2005) Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res 65(11):4775–4781

    CAS  PubMed  Google Scholar 

  • Bertout JA, Patel SA, Fryer BH, Durham AC, Covello KL, Olive KP et al (2009) Heterozygosity for hypoxia inducible factor 1alpha decreases the incidence of thymic lymphomas in a p53 mutant mouse model. Cancer Res 69(7):3213–3220

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bienz M, Clevers H (2003) Armadillo/beta-catenin signals in the nucleus–proof beyond a reasonable doubt? Nat Cell Biol 5(3):179–182

    CAS  PubMed  Google Scholar 

  • Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM et al (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581

    PubMed  Google Scholar 

  • Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML et al (2006) Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem 281(32):22575–22585

    CAS  PubMed  Google Scholar 

  • Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D et al (2012) Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 21(1):52–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braunstein S, Karpisheva K, Pola C, Goldberg J, Hochman T, Yee H et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28(3):501–512

    CAS  PubMed  Google Scholar 

  • Brennan DJ, Jirstrom K, Kronblad A, Millikan RC, Landberg G, Duffy MJ et al (2006) CA IX is an independent prognostic marker in premenopausal breast cancer patients with one to three positive lymph nodes and a putative marker of radiation resistance. Clin Cancer Res 12(21):6421–6431

    CAS  PubMed  Google Scholar 

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545):1337–1340

    CAS  PubMed  Google Scholar 

  • Buchler P, Reber HA, Tomlinson JS, Hankinson O, Kallifatidis G, Friess H et al (2009) Transcriptional regulation of urokinase-type plasminogen activator receptor by hypoxia-inducible factor 1 is crucial for invasion of pancreatic and liver cancer. Neoplasia 11(2):196–206

    PubMed Central  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    CAS  PubMed  Google Scholar 

  • Calvani M, Trisciuoglio D, Bergamaschi C, Shoemaker RH, Melillo G (2008) Differential involvement of vascular endothelial growth factor in the survival of hypoxic colon cancer cells. Cancer Res 68(1):285–291

    CAS  PubMed  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H et al (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348

    CAS  PubMed  Google Scholar 

  • Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK et al (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131(2):309–323

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490

    CAS  PubMed  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9(6):1072–1083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandel NS, Vander Heiden MG, Thompson CB, Schumacker PT (2000) Redox regulation of p53 during hypoxia. Oncogene 19(34):3840–3848

    CAS  PubMed  Google Scholar 

  • Chang Q, Jurisica I, Do T, Hedley DW (2011) Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 71(8):3110–3120

    CAS  PubMed  Google Scholar 

  • Chano T, Saji M, Inoue H, Minami K, Kobayashi T, Hino O et al (2006) Neuromuscular abundance of RB1CC1 contributes to the non-proliferating enlarged cell phenotype through both RB1 maintenance and TSC1 degradation. Int J Mol Med 18(3):425–432

    CAS  PubMed  Google Scholar 

  • Chen D, Li M, Luo J, Gu W (2003) Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278(16):13595–13598

    CAS  PubMed  Google Scholar 

  • Chen J, Imanaka N, Chen J, Griffin JD (2010) Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 102(2):351–360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C, Ma Q, Ma X, Liu Z, Liu X (2011) Association of elevated HIF-2alpha levels with low Beclin 1 expression and poor prognosis in patients with chondrosarcoma. Ann Surg Oncol 18(8):2364–2372

    PubMed  Google Scholar 

  • Chen R, Xu M, Hogg RT, Li J, Little B, Gerard RD et al (2012) The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling. J Biol Chem 287(36):30800–30811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chia SK, Wykoff CC, Watson PH, Han C, Leek RD, Pastorek J et al (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19(16):3660–3668

    CAS  PubMed  Google Scholar 

  • Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514

    CAS  PubMed  Google Scholar 

  • Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82(7):2031–2037

    CAS  PubMed  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC et al (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275(33):25733–25741

    CAS  PubMed  Google Scholar 

  • Comino-Mendez I, de Cubas AA, Bernal C, Alvarez-Escola C, Sanchez-Malo C, Ramirez-Tortosa CL et al (2013) Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet 22(11):2169–2176

    CAS  PubMed  Google Scholar 

  • Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8(7):702–710

    CAS  PubMed  Google Scholar 

  • Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE (1999) EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274(47):33709–33713

    CAS  PubMed  Google Scholar 

  • Corn PG, Ricci MS, Scata KA, Arsham AM, Simon MC, Dicker DT et al (2005) Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol Ther 4(11):1285–1294

    CAS  PubMed  Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20(5):557–570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S (2010) Mechanism of hypoxia-induced NF-kappaB. Mol Cell Biol 30(20):4901–4921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F et al (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103(48):18154–18159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlqvist C, Blokzijl A, Chapman G, Falk A, Dannaeus K, Ibanez CF et al (2003) Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130(24):6089–6099

    CAS  PubMed  Google Scholar 

  • Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56

    CAS  PubMed  Google Scholar 

  • Danielsen T, Hvidsten M, Stokke T, Solberg K, Rofstad EK (1998) Hypoxia induces p53 accumulation in the S-phase and accumulation of hypophosphorylated retinoblastoma protein in all cell cycle phases of human melanoma cells. Br J Cancer 78(12):1547–1558

    PubMed Central  CAS  PubMed  Google Scholar 

  • de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ et al (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124(6):1139–1148

    PubMed  Google Scholar 

  • de Sousa EM, Vermeulen L, Richel D, Medema JP (2011) Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 17(4):647–653

    PubMed  Google Scholar 

  • Denko N, Wernke-Dollries K, Johnson AB, Hammond E, Chiang CM, Barton MC (2003) Hypoxia actively represses transcription by inducing negative cofactor 2 (Dr1/DrAP1) and blocking preinitiation complex assembly. J Biol Chem 278(8):5744–5749

    CAS  PubMed  Google Scholar 

  • Devlin C, Greco S, Martelli F, Ivan M (2011) miR-210: more than a silent player in hypoxia. IUBMB Life 63(2):94–100

    CAS  PubMed  Google Scholar 

  • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22(2):239–251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94(9):4273–4278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54

    CAS  PubMed  Google Scholar 

  • Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    CAS  PubMed  Google Scholar 

  • Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, Misuraca KL et al (2011) Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146(1):53–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102(13):4783–4788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, Yilmaz M et al (2014) VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res 74:1566–1575

    CAS  PubMed  Google Scholar 

  • Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63(1):51–60

    CAS  PubMed  Google Scholar 

  • Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S (2007) Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci USA 104(32):13092–13097

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gan B, Melkoumian ZK, Wu X, Guan KL, Guan JL (2005) Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control. J Cell Biol 170(3):379–389

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Roman J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335(2):259–269

    CAS  PubMed  Google Scholar 

  • Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M et al (1997) Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89(2):139–147

    CAS  PubMed  Google Scholar 

  • Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G et al (2010) hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116(9):2148–2158

    PubMed  Google Scholar 

  • Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP et al (2010) Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 110(2):457–467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817

    CAS  PubMed  Google Scholar 

  • Giatromanolaki A, Koukourakis MI, Sowter HM, Sivridis E, Gibson S, Gatter KC et al (2004) BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clin Cancer Res 10(16):5566–5571

    CAS  PubMed  Google Scholar 

  • Giles RH, Lolkema MP, Snijckers CM, Belderbos M, van der Groep P, Mans DA et al (2006) Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene 25(21):3065–3070

    CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    CAS  PubMed  Google Scholar 

  • Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez-Moreno O, Lecanda J, Green JE, Segura V, Catena R, Serrano D et al (2010) VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Exp Cell Res 316(4):554–567

    CAS  PubMed  Google Scholar 

  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr, Giaccia AJ (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14(9):6264–6277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26(312):638–648

    CAS  PubMed  Google Scholar 

  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    CAS  PubMed  Google Scholar 

  • Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M et al (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209(3):507–520

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, Thorner PS et al (2007) Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 67(23):11234–11243

    CAS  PubMed  Google Scholar 

  • Hansson EM, Lendahl U, Chapman G (2004) Notch signaling in development and disease. Semin Cancer Biol 14(5):320–328

    CAS  PubMed  Google Scholar 

  • Harrison H, Rogerson L, Gregson HJ, Brennan KR, Clarke RB, Landberg G (2013) Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-alpha status. Cancer Res 73(4):1420–1433

    CAS  PubMed  Google Scholar 

  • Hart AH, Hartley L, Ibrahim M, Robb L (2004) Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 230(1):187–198

    CAS  PubMed  Google Scholar 

  • Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG (2004) Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod 71(4):1108–1119

    CAS  PubMed  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN (2010) Hypoxia inducible factors in cancer stem cells. Br J Cancer 102(5):789–795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helczynska K, Kronblad A, Jogi A, Nilsson E, Beckman S, Landberg G et al (2003) Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 63(7):1441–1444

    CAS  PubMed  Google Scholar 

  • Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S et al (2008) Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res 68(22):9212–9220

    CAS  PubMed  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    CAS  PubMed  Google Scholar 

  • Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117(12):3810–3820

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirose K, Morita M, Ema M, Mimura J, Hamada H, Fujii H et al (1996) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol 16(4):1706–1713

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121(3):465–477

    CAS  PubMed  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    CAS  PubMed  Google Scholar 

  • Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515

    CAS  PubMed  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H et al (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10(5):413–423

    CAS  PubMed  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95(14):7987–7992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hubbi ME, Hu H, Kshitiz, Gilkes DM, Semenza GL (2013) Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem 288(29):20768–20775

    Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383

    CAS  PubMed  Google Scholar 

  • Infanger DW, Cho Y, Lopez BS, Mohanan S, Liu SC, Gursel D et al (2013) Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res 73(23):7079–7089

    CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    CAS  PubMed  Google Scholar 

  • Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    CAS  PubMed  Google Scholar 

  • Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA (1998) Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 73(1):117–123

    CAS  PubMed  Google Scholar 

  • Jiang BH, Agani F, Passaniti A, Semenza GL (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57(23):5328–5335

    CAS  PubMed  Google Scholar 

  • Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T et al (2007) Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol 14(11):1034–1039

    CAS  PubMed  Google Scholar 

  • Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L et al (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 99(10):7021–7026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jogi A, Vallon-Christersson J, Holmquist L, Axelson H, Borg A, Pahlman S (2004) Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res 295(2):469–487

    CAS  PubMed  Google Scholar 

  • Jubb AM, Buffa FM, Harris AL (2010) Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. J Cell Mol Med 14(1–2):18–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaelin WG Jr (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8(11):865–873

    CAS  PubMed  Google Scholar 

  • Kaidi A, Williams AC, Paraskeva C (2007) Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9(2):210–217

    CAS  PubMed  Google Scholar 

  • Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274(10):6519–6525

    CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13(14):4042–4045

    CAS  PubMed  Google Scholar 

  • Katsuno Y, Lamouille S, Derynck R (2013) TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25(1):76–84

    CAS  PubMed  Google Scholar 

  • Keith B, Johnson RS, Simon MC (2012) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22

    CAS  Google Scholar 

  • Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93(11):1074–1081

    CAS  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    PubMed  Google Scholar 

  • Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27(21):7381–7393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ, Heathcote SA et al (2009) HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest 119(8):2160–2170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F et al (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95(1):189–197

    CAS  PubMed  Google Scholar 

  • Kimura H, Weisz A, Ogura T, Hitomi Y, Kurashima Y, Hashimoto K et al (2001) Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J Biol Chem 276(3):2292–2298

    CAS  PubMed  Google Scholar 

  • Koh MY, Darnay BG, Powis G (2008) Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol Cell Biol 28(23):7081–7095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koh MY, Lemos R Jr, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71(11):4015–4027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54(6):1425–1430

    CAS  PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    CAS  PubMed  Google Scholar 

  • Koritzinsky M, Magagnin MG, van den Beucken T, Seigneuric R, Savelkouls K, Dostie J et al (2006) Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 25(5):1114–1125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23(9):1949–1956

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30(1):344–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143

    CAS  PubMed  Google Scholar 

  • Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66(5):2725–2731

    CAS  PubMed  Google Scholar 

  • Kronblad A, Jirstrom K, Ryden L, Nordenskjold B, Landberg G (2006) Hypoxia inducible factor-1alpha is a prognostic marker in premenopausal patients with intermediate to highly differentiated breast cancer but not a predictive marker for tamoxifen response. Int J Cancer 118(10):2609–2616

    CAS  PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Negrini M, Calin GA, Davuluri RV, Ivan M (2007) Regulation of microRNA expression: the hypoxic component. Cell Cycle 6(12):1426–1431

    CAS  PubMed  Google Scholar 

  • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002a) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16(12):1466–1471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002b) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295(5556):858–861

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    CAS  PubMed  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13(6):941–950

    CAS  PubMed  Google Scholar 

  • Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q et al (2007a) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26(1):63–74

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J et al (2007b) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282(49):35803–35813

    CAS  PubMed  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67(2):563–572

    CAS  PubMed  Google Scholar 

  • Lim JH, Chun YS, Park JW (2008) Hypoxia-inducible factor-1alpha obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of beta-catenin. Cancer Res 68(13):5177–5184

    CAS  PubMed  Google Scholar 

  • Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18(7):1423–1431

    CAS  PubMed  Google Scholar 

  • Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7(3):86–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21(4):521–531

    PubMed Central  PubMed  Google Scholar 

  • Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y et al (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6(4):e19139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorin S, Hamai A, Mehrpour M, Codogno P (2013) Autophagy regulation and its role in cancer. Semin Cancer Biol 23(5):361–379

    CAS  PubMed  Google Scholar 

  • Luo W, Chang R, Zhong J, Pandey A, Semenza GL (2012) Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA 109(49):E3367–E3376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554

    CAS  PubMed  Google Scholar 

  • Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277(36):32405–32408

    CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    CAS  PubMed  Google Scholar 

  • Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS et al (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, Wildes F, Pathak AP et al (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65(23):10801–10809

    CAS  PubMed  Google Scholar 

  • Mohlin S, Hamidian A, Pahlman S (2013) HIF2A and IGF2 expression correlates in human neuroblastoma cells and normal immature sympathetic neuroblasts. Neoplasia 15(3):328–334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888

    PubMed Central  PubMed  Google Scholar 

  • Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T et al (2009) MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 8(5):1067–1074

    CAS  PubMed  Google Scholar 

  • Morrison CD, Parvani JG, Schiemann WP (2013) The relevance of the TGF-beta Paradox to EMT-MET programs. Cancer Lett 341(1):30–40

    CAS  PubMed  Google Scholar 

  • Morriss GM, New DA (1979) Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. J Embryol Exp Morphol 54:17–35

    CAS  PubMed  Google Scholar 

  • Moulder JE, Rockwell S (1987) Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev 5(4):313–341

    CAS  PubMed  Google Scholar 

  • Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A et al (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281(44):33095–33106

    CAS  PubMed  Google Scholar 

  • Nam SY, Ko YS, Jung J, Yoon J, Kim YH, Choi YJ et al (2011) A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. Br J Cancer 104(1):166–174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nanni S, Benvenuti V, Grasselli A, Priolo C, Aiello A, Mattiussi S et al (2009) Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest 119(5):1093–1108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E et al (2006a) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325

    PubMed  Google Scholar 

  • Naumov GN, Akslen LA, Folkman J (2006b) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787

    CAS  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    CAS  PubMed  Google Scholar 

  • Nilsson H, Jogi A, Beckman S, Harris AL, Poellinger L, Pahlman S (2005) HIF-2alpha expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. Exp Cell Res 303(2):447–456

    CAS  PubMed  Google Scholar 

  • Nofziger D, Miyamoto A, Lyons KM, Weinmaster G (1999) Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126(8):1689–1702

    CAS  PubMed  Google Scholar 

  • Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S et al (2009) HIF-1alpha and HIF-2alpha are differentially regulated in vivo in neuroblastoma: high HIF-1alpha correlates negatively to advanced clinical stage and tumor vascularization. Clin Cancer Res 15(23):7130–7136

    CAS  PubMed  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24

    PubMed  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    PubMed  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427

    CAS  PubMed  Google Scholar 

  • Oszajca K, Bieniasz M, Brown G, Swiatkowska M, Bartkowiak J, Szemraj J (2008) Effect of oxidative stress on the expression of t-PA, u-PA, u-PAR, and PAI-1 in endothelial cells. Biochem Cell Biol 86(6):477–486

    CAS  PubMed  Google Scholar 

  • Papadogiorgaki M, Koliou P, Kotsiakis X, Zervakis ME (2013) Mathematical modelling of spatio-temporal glioma evolution. Theor Biol Med Model 10:47

    PubMed Central  PubMed  Google Scholar 

  • Park SW, Chung NG, Hur SY, Kim HS, Yoo NJ, Lee SH (2009) Mutational analysis of hypoxia-related genes HIF1alpha and CUL2 in common human cancers. APMIS 117(12):880–885

    CAS  PubMed  Google Scholar 

  • Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104(13):5431–5436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    CAS  PubMed  Google Scholar 

  • Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97(15):8386–8391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perrot-Applanat M, Di Benedetto M (2012) Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adh Migr 6(6):547–553

    PubMed Central  PubMed  Google Scholar 

  • Pietras A, Gisselsson D, Ora I, Noguera R, Beckman S, Navarro S et al (2008) High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol 214(4):482–488

    CAS  PubMed  Google Scholar 

  • Pietras A, Hansford LM, Johnsson AS, Bridges E, Sjolund J, Gisselsson D et al (2009) HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci USA 106(39):16805–16810

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pietras A, von Stedingk K, Lindgren D, Pahlman S, Axelson H (2011) JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation. Mol Cancer Res 9(5):626–636

    CAS  PubMed  Google Scholar 

  • Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    CAS  PubMed  Google Scholar 

  • Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM et al (2010) Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res 70(24):10351–10361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quero L, Dubois L, Lieuwes NG, Hennequin C, Lambin P (2011) miR-210 as a marker of chronic hypoxia, but not a therapeutic target in prostate cancer. Radiother Oncol 101(1):203–208

    CAS  PubMed  Google Scholar 

  • Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351

    CAS  PubMed  Google Scholar 

  • Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS et al (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117(4):1068–1077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rankin EB, Rha J, Unger TL, Wu CH, Shutt HP, Johnson RS et al (2008) Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 27(40):5354–5358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    CAS  PubMed  Google Scholar 

  • Reyes H, Reisz-Porszasz S, Hankinson O (1992) Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256(5060):1193–1195

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    CAS  PubMed  Google Scholar 

  • Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274(46):32631–32637

    CAS  PubMed  Google Scholar 

  • Roberts AM, Watson IR, Evans AJ, Foster DA, Irwin MS, Ohh M (2009) Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res 69(23):9056–9064

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM et al (2000) Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 60(15):4010–4015

    CAS  PubMed  Google Scholar 

  • Ryu JH, Li SH, Park HS, Park JW, Lee B, Chun YS (2011) Hypoxia-inducible factor alpha subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem 286(9):6963–6970

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sagone AL Jr, Lawrence T, Balcerzak SP (1973) Effect of smoking on tissue oxygen supply. Blood 41(6):845–851

    CAS  PubMed  Google Scholar 

  • Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105(17):6392–6397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–22647

    CAS  PubMed  Google Scholar 

  • Sanchez-Puig N, Veprintsev DB, Fersht AR (2005) Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell 17(1):11–21

    CAS  PubMed  Google Scholar 

  • Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M et al (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117(23):e207–e217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD et al (2012) Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ et al (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 35(4):331–340

    CAS  PubMed  Google Scholar 

  • Scortegagna M, Cataisson C, Martin RJ, Hicklin DJ, Schreiber RD, Yuspa SH et al (2008) HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling. Blood 111(7):3343–3354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    CAS  PubMed  Google Scholar 

  • Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365(6):537–547

    CAS  PubMed  Google Scholar 

  • Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40(2):310–322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen C, Kaelin WG Jr (2013) The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol 23(1):18–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S et al (2011) Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov 1(3):222–235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    CAS  PubMed  Google Scholar 

  • Sorensen BS, Busk M, Olthof N, Speel EJ, Horsman MR, Alsner J et al (2013) Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells. Radiother Oncol 108(3):500–505

    PubMed  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98–104

    CAS  PubMed  Google Scholar 

  • Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S et al (2009) Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 75(12):1278–1287

    CAS  PubMed  Google Scholar 

  • Tacchini L, Matteucci E, De Ponti C, Desiderio MA (2003) Hepatocyte growth factor signaling regulates transactivation of genes belonging to the plasminogen activation system via hypoxia inducible factor-1. Exp Cell Res 290(2):391–401

    CAS  PubMed  Google Scholar 

  • Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26(2):495–502

    CAS  PubMed  Google Scholar 

  • Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N et al (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun 248(3):789–794

    CAS  PubMed  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106

    CAS  PubMed  Google Scholar 

  • Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC et al (2007) BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13(2 Pt 1):467–474

    CAS  PubMed  Google Scholar 

  • Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP et al (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495

    CAS  PubMed  Google Scholar 

  • Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19(16):4298–4309

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor MS (2001) Characterization and comparative analysis of the EGLN gene family. Gene 275(1):125–132

    CAS  PubMed  Google Scholar 

  • Teicher BA (1994) Hypoxia and drug resistance. Cancer Metastasis Rev 13(2):139–168

    CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    CAS  PubMed  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11(1):72–82

    CAS  PubMed  Google Scholar 

  • To KK, Sedelnikova OA, Samons M, Bonner WM, Huang LE (2006) The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. EMBO J 25(20):4784–4794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277(31):27975–27981

    CAS  PubMed  Google Scholar 

  • Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR et al (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486(7401):126–129

    CAS  PubMed  Google Scholar 

  • Vaapil M, Helczynska K, Villadsen R, Petersen OW, Johansson E, Beckman S et al (2012) Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells. PLoS One 7(9):e46543

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vainrib M, Golan M, Amir S, Dang DT, Dang LH, Bar-Shira A et al (2012) HIF1A C1772T polymorphism leads to HIF-1alpha mRNA overexpression in prostate cancer patients. Cancer Biol Ther 13(9):720–726

    CAS  PubMed  Google Scholar 

  • van Hagen M, Overmeer RM, Abolvardi SS, Vertegaal AC (2010) RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated hypoxia-inducible factor-2alpha. Nucleic Acids Res 38(6):1922–1931

    PubMed Central  PubMed  Google Scholar 

  • Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11):1278–1281

    CAS  PubMed  Google Scholar 

  • Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6):717–728

    CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    CAS  PubMed  Google Scholar 

  • Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201(1):105–115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268(29):21513–21518

    CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237

    CAS  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang R, Zhang YW, Zhang X, Liu R, Zhang X, Hong S et al (2006) Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J 20(8):1275–1277

    PubMed  Google Scholar 

  • Weigand M, Hantel P, Kreienberg R, Waltenberger J (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8(3):197–204

    CAS  PubMed  Google Scholar 

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92(7):2260–2268

    CAS  PubMed  Google Scholar 

  • Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C et al (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17(2):271–273

    CAS  PubMed  Google Scholar 

  • Xia X, Kung AL (2009) Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol 10(10):R113

    PubMed Central  PubMed  Google Scholar 

  • Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS et al (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 106(11):4260–4265

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W et al (2011) Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 30(39):4075–4086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT et al (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 107(14):6334–6339

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K et al (2008) Hypoxia-inducible factor 1alpha is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat 110(3):465–475

    CAS  PubMed  Google Scholar 

  • Yang AD, Camp ER, Fan F, Shen L, Gray MJ, Liu W et al (2006) Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 66(1):46–51

    CAS  PubMed  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305

    CAS  PubMed  Google Scholar 

  • Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ et al (2010) Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 16(6):687–693

    CAS  PubMed  Google Scholar 

  • Yang C, Sun MG, Matro J, Huynh TT, Rahimpour S, Prchal JT et al (2013) Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood 121(13):2563–2566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yeo EJ, Cho YS, Kim MS, Park JW (2008) Contribution of HIF-1alpha or HIF-2alpha to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation. Ann Hematol 87(1):11–17

    CAS  PubMed  Google Scholar 

  • Yi T, Papadopoulos E, Hagner PR, Wagner G (2013) Hypoxia-inducible factor-1alpha (HIF-1alpha) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions. J Biol Chem 288(26):18732–18742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon H, Shin SH, Shin DH, Chun YS, Park JW (2014) Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochem Biophys Res Commun 444:36–43

    CAS  PubMed  Google Scholar 

  • Yoshimura H, Dhar DK, Kohno H, Kubota H, Fujii T, Ueda S et al (2004) Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin Cancer Res 10(24):8554–8560

    CAS  PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J et al (2013) Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1alpha in hepatocellular carcinoma. BMC Cancer 13:108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924):261–265

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao JH, Luo Y, Jiang YG, He DL, Wu CT (2011) Knockdown of beta-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. Cancer Invest 29(6):377–382

    CAS  PubMed  Google Scholar 

  • Zheng X, Linke S, Dias JM, Zheng X, Gradin K, Wallis TP et al (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 105(9):3368–3373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545

    CAS  PubMed  Google Scholar 

  • Zhu H, Wang D, Liu Y, Su Z, Zhang L, Chen F et al (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int 13(1):119

    PubMed Central  PubMed  Google Scholar 

  • Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E et al (2012) Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 367(10):922–930

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

There is a vast amount of literature in this research area making it impossible to include all important publications. I have in many cases therefore referred to review articles and in other cases, I am sure, missed out on interesting work. My work is financed by the Swedish Research Council, the Crafoord Foundation, Percy Falk Foundation, the Royal Physiographic Society, Hans v Kantzow foundation, Gunnar Nilsson CS, CREATE Health and BioCare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Jögi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Jögi, A. (2015). Tumour Hypoxia and the Hypoxia-Inducible Transcription Factors: Key Players in Cancer Progression and Metastasis. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_4

Download citation

Publish with us

Policies and ethics