Skip to main content

The Relevance of the Mitochondrial H+-ATP Synthase in Cancer Biology

  • Chapter
Tumor Cell Metabolism

Abstract

Cancer cells depend on metabolic changes to cover the increased energy and metabolite demands that sustain proliferation. The enhanced rate of aerobic glycolysis and the activation of other metabolic pathways provide the energy and building blocks that support cell division. These changes occurred in response to the partial silencing of the bioenergetic function of mitochondria, specifically of the H+-ATP synthase, which is the engine that produces most of the ATP that sustains cellular activities in normal differentiated aerobic cells. Changes in the bioenergetic phenotype of carcinomas can be assessed by the determination of the expression of the catalytic subunit of the H+-ATP synthase (β-F1-ATPase) relative to the expression of the enzyme of glycolysis glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The β-F1-ATPase/GAPDH ratio provides a bioenergetic signature of the tumor with clinical relevance as a molecular marker of the prognosis of different cancer patients as well as of the tumor response to chemotherapy. Energy metabolism of cancer cells has become an attractive target for cancer therapy because it is a common phenotypic trait of most carcinomas. In addition, silencing of the H+-ATP synthase in most prevalent carcinomas is also exerted at the activity level by overexpression of the ATPase inhibitory factor 1 (IF1), a protein that contributes to metabolic rewiring and the signaling of cell death-resistant phenotypes in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria [see comments]. Nature 370:621–628

    CAS  PubMed  Google Scholar 

  • Acebo P, Giner D, Calvo P, Blanco-Rivero A, Ortega AD, Fernandez PL et al (2009) Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. Transl Oncol 2:138–145

    PubMed Central  PubMed  Google Scholar 

  • Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S et al (2011) Bcl-x(L) regulates metabolic efficiency of neurons through interaction with the mitochondrial F(1)F(O) ATP synthase. Nat Cell Biol 13:1224–1233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aldea M, Clofent J, Nunez de Arenas C, Chamorro M, Velasco M, Berrendero JR et al (2011) Reverse phase protein microarrays quantify and validate the bioenergetic signature as biomarker in colorectal cancer. Cancer Lett 311:210–218

    CAS  PubMed  Google Scholar 

  • Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C, Avadhani NG (2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20:1910–1920

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arismendi-Morillo G (2011) Electron microscopy morphology of the mitochondrial network in gliomas and their vascular microenvironment. Biochim Biophys Acta 1807:602–608

    CAS  PubMed  Google Scholar 

  • Bacolod MD, Barany F (2010) Gene dysregulations driven by somatic copy number aberrations-biological and clinical implications in colon tumors: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 12:552–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baggetto LG (1992) Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74:959–974

    CAS  PubMed  Google Scholar 

  • Barnes CJ, Li F, Mandal M, Yang Z, Sahin AA, Kumar R (2002) Heregulin induces expression, ATPase activity, and nuclear localization of G3BP, a Ras signaling component, in human breast tumors. Cancer Res 62:1251–1255

    CAS  PubMed  Google Scholar 

  • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322

    CAS  PubMed  Google Scholar 

  • Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM et al (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 5:1119–1130

    CAS  PubMed  Google Scholar 

  • Bienertova-Vasku J, Sana J, Slaby O (2013) The role of microRNAs in mitochondria in cancer. Cancer Lett 336:1–7

    CAS  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    CAS  PubMed  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boros LG, Torday JS, Lim S, Bassilian S, Cascante M, Lee WN (2000) Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res 60:1183–1185

    CAS  PubMed  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase–some probabilities and possibilities. Biochim Biophys Acta 1140:215–250

    CAS  PubMed  Google Scholar 

  • Boyer PD (1997) The ATP synthase. A splendid molecular machine. Annu Rev Biochem 66:717–749

    CAS  PubMed  Google Scholar 

  • Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395

    CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    CAS  PubMed  Google Scholar 

  • Capaldi RA, Aggeler R (2002) Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160

    CAS  PubMed  Google Scholar 

  • Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9

    PubMed Central  PubMed  Google Scholar 

  • Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    CAS  PubMed  Google Scholar 

  • Chivasa S, Tome DF, Hamilton JM, Slabas AR (2011) Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Mol Cell Proteomics 10(M110):003905

    PubMed  Google Scholar 

  • Costello LC, Franklin RB (2005) ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8

    CAS  PubMed  Google Scholar 

  • Cuezva JM, Ostronoff LK, Ricart J, Lopez de Heredia M, Di Liegro CM, Izquierdo JM (1997) Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 29:365–377

    CAS  PubMed  Google Scholar 

  • Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681

    CAS  PubMed  Google Scholar 

  • Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM et al (2004) The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis 25:1157–1163

    CAS  PubMed  Google Scholar 

  • Cuezva JM, Sanchez-Arago M, Sala S, Blanco-Rivero A, Ortega AD (2007) A message emerging from development: the repression of mitochondrial beta-F1-ATPase expression in cancer. J Bioenerg Biomembr 39:259–265

    CAS  PubMed  Google Scholar 

  • Cuezva JM, Ortega AD, Willers I, Sanchez-Cenizo L, Aldea M, Sanchez-Arago M (2009) The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta 1792:1145–1158

    CAS  PubMed  Google Scholar 

  • Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Errico I, Salvatore L, Murzilli S, Lo Sasso G, Latorre D, Martelli N et al (2011) Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinal epithelial cell fate. Proc Natl Acad Sci USA 108:6603–6608

    PubMed Central  PubMed  Google Scholar 

  • Dang CV (2010) p32 (C1QBP) and cancer cell metabolism: is the Warburg effect a lot of hot air? Mol Cell Biol 30:1300–1302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daum B, Walter A, Horst A, Osiewacz HD, Kuhlbrandt W (2013) Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA 110:15301–15306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A et al (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci USA 108:14121–14126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kuhlbrandt W (2012) Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci USA 109:13602–13607

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL et al (2009) Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 8:54

    PubMed Central  PubMed  Google Scholar 

  • de Heredia ML, Izquierdo JM, Cuezva JM (2000) A conserved mechanism for controlling the translation of beta-F1-ATPase mRNA between the fetal liver and cancer cells. J Biol Chem 275:7430–7437

    PubMed  Google Scholar 

  • de Koning TJ, Snell K, Duran M, Berger R, Poll-The BT, Surtees R (2003) L-serine in disease and development. Biochem J 371:653–661

    PubMed Central  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    CAS  PubMed  Google Scholar 

  • DeFilippis RA, Chang H, Dumont N, Rabban JT, Chen YY, Fontenay GV et al (2012) CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov 2:826–839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Des Rosiers C, Fernandez CA, David F, Brunengraber H (1994) Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates. J Biol Chem 269:27179–27182

    CAS  PubMed  Google Scholar 

  • Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094

    CAS  PubMed  Google Scholar 

  • Di Liegro CM, Bellafiore M, Izquierdo JM, Rantanen A, Cuezva JM (2000) 3’-untranslated regions of oxidative phosphorylation mRNAs function in vivo as enhancers of translation. Biochem J 352(Pt 1):109–115

    PubMed Central  PubMed  Google Scholar 

  • Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R (1956) The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. J Biol Chem 218:607–616

    CAS  PubMed  Google Scholar 

  • Eng C, Kiuru M, Fernandez MJ, Aaltonen LA (2003) A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202

    CAS  PubMed  Google Scholar 

  • Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Formentini L, Martinez-Reyes I, Cuezva JM (2010) The mitochondrial bioenergetic capacity of carcinomas. IUBMB Life 62:554–560

    CAS  PubMed  Google Scholar 

  • Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 (IF1) triggers a ROS-mediated retrograde pro-survival and proliferative response. Mol Cell 45:731–742

    CAS  PubMed  Google Scholar 

  • Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10:481–494

    CAS  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guitard E, Parker F, Millon R, Abecassis J, Tocque B (2001) G3BP is overexpressed in human tumors and promotes S phase entry. Cancer Lett 162:213–221

    CAS  PubMed  Google Scholar 

  • Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C et al (2013) Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 4:584–599

    PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23:302–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    CAS  PubMed  Google Scholar 

  • He QY, Chen J, Kung HF, Yuen AP, Chiu JF (2004) Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics 4:271–278

    CAS  PubMed  Google Scholar 

  • Hernlund E, Hjerpe E, Avall-Lundqvist E, Shoshan M (2009) Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment. Mol Cancer Ther 8:1916–1923

    CAS  PubMed  Google Scholar 

  • Hervouet E, Demont J, Pecina P, Vojtiskova A, Houstek J, Simonnet H et al (2005) A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis 26:531–539

    CAS  PubMed  Google Scholar 

  • Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M et al (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378:17–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM et al (2005) Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 26:2095–2104

    CAS  PubMed  Google Scholar 

  • Izquierdo JM, Cuezva JM (1997) Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3’ untranslated region of the mRNA. Mol Cell Biol 17:5255–5268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izquierdo JM, Cuezva JM (2000) Internal-ribosome-entry-site functional activity of the 3’-untranslated region of the mRNA for the beta subunit of mitochondrial H+-ATP synthase. Biochem J 346(Pt 3):849–855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izquierdo JM, Cuezva JM (2005) Epigenetic regulation of the binding activity of translation inhibitory proteins that bind the 3’ untranslated region of beta-F1-ATPase mRNA by adenine nucleotides and the redox state. Arch Biochem Biophys 433:481–486

    CAS  PubMed  Google Scholar 

  • Kaipparettu BA, Ma Y, Park JH, Lee TL, Zhang Y, Yotnda P et al (2013) Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS One 8:e61747

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kannan R, Lyon I, Baker N (1980) Dietary control of lipogenesis in vivo in host tissues and tumors of mice bearing Ehrlich ascites carcinoma. Cancer Res 40:4606–4611

    CAS  PubMed  Google Scholar 

  • Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108:3749–3754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kilburn DG, Lilly MD, Webb FC (1969) The energetics of mammalian cell growth. J Cell Sci 4:645–654

    CAS  PubMed  Google Scholar 

  • Kim JY, Kim YH, Chang I, Kim S, Pak YK, Oh BH et al (2002) Resistance of mitochondrial DNA-deficient cells to TRAIL: role of Bax in TRAIL-induced apoptosis. Oncogene 21:3139–3148

    CAS  PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    CAS  PubMed  Google Scholar 

  • Kovacevic Z, McGivan JD (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63:547–605

    CAS  PubMed  Google Scholar 

  • Krebs H (1981) Otto Warburg: cell physiologist, biochemist and eccentric. Clarendon, Oxford

    Google Scholar 

  • Krieg RC, Knuechel R, Schiffmann E, Liotta LA, Petricoin EF 3rd, Herrmann PC (2004) Mitochondrial proteome: cancer-altered metabolism associated with cytochrome c oxidase subunit level variation. Proteomics 4:2789–2795

    CAS  PubMed  Google Scholar 

  • Lazo PA, Sols A (1980) Identification of an AMP-activatable pyruvate dehydrogenase isozyme in embryos and tumors. FEBS Lett 120:287–288

    CAS  PubMed  Google Scholar 

  • Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121

    PubMed Central  CAS  PubMed  Google Scholar 

  • Levy NS, Chung S, Furneaux H, Levy AP (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273:6417–6423

    CAS  PubMed  Google Scholar 

  • Li RJ, Zhang GS, Chen YH, Zhu JF, Lu QJ, Gong FJ et al (2010) Down-regulation of mitochondrial ATPase by hypermethylation mechanism in chronic myeloid leukemia is associated with multidrug resistance. Ann Oncol 7:1506–1514

    Google Scholar 

  • Lin PC, Lin JK, Yang SH, Wang HS, Li AF, Chang SC (2008) Expression of beta-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer: clinical data analysis and evidence from an in vitro study. Int J Colorectal Dis 23:1223–1232

    PubMed  Google Scholar 

  • Locasale JW, Cantley LC (2010) Altered metabolism in cancer. BMC Biol 8:88

    PubMed Central  PubMed  Google Scholar 

  • Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43:869–874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Rios F, Sanchez-Arago M, Garcia-Garcia E, Ortega AD, Berrendero JR, Pozo-Rodriguez F et al (2007) Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res 67:9013–9017

    CAS  PubMed  Google Scholar 

  • Ma J, Zhang Q, Chen S, Fang B, Yang Q, Chen C et al (2013) Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1alpha accumulation via increased production of reactive oxygen species. PLoS One 8:e69485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Diez M, Santamaria G, Ortega AD, Cuezva JM (2006) Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3’UTRs. PLoS One 1:e107

    PubMed Central  PubMed  Google Scholar 

  • Martinez-Reyes I, Sanchez-Arago M, Cuezva JM (2012) AMPK and GCN2-ATF4 signal the repression of mitochondria in colon cancer cells. Biochem J 444:249–259

    CAS  PubMed  Google Scholar 

  • Matsuyama S, Xu Q, Velours J, Reed JC (1998) The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell 1:327–336

    CAS  PubMed  Google Scholar 

  • Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980

    CAS  PubMed  Google Scholar 

  • McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND et al (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medes G, Friedmann B, Weinhouse S (1956) Fatty acid metabolism. VIII. Acetate metabolism in vitro during hepatocarcinogenesis by p-dimethylaminoazobenzene. Cancer Res 16:57–62

    CAS  PubMed  Google Scholar 

  • Meierhofer D, Mayr JA, Foetschl U, Berger A, Fink K, Schmeller N et al (2004) Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinomas. Carcinogenesis 25:1005–1010

    CAS  PubMed  Google Scholar 

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384

    PubMed Central  PubMed  Google Scholar 

  • Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31–34

    Google Scholar 

  • Moreadith RW, Lehninger AL (1984) The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+ -dependent malic enzyme. J Biol Chem 259:6215–6221

    CAS  PubMed  Google Scholar 

  • Mullen AR, DeBerardinis RJ (2012) Genetically-defined metabolic reprogramming in cancer. Trends Endocrinol Metab 23:552–559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388

    PubMed Central  PubMed  Google Scholar 

  • Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ookhtens M, Kannan R, Lyon I, Baker N (1984) Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 247:R146–R153

    CAS  PubMed  Google Scholar 

  • Ortega AD, Sala S, Espinosa E, Gonzalez-Baron M, Cuezva JM (2008) HuR and the bioenergetic signature of breast cancer: a low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis 29:2053–2061

    CAS  PubMed  Google Scholar 

  • Ortega AD, Sanchez-Arago M, Giner-Sanchez D, Sanchez-Cenizo L, Willers I, Cuezva JM (2009) Glucose avidity of carcinomas. Cancer Lett 276:125–135

    CAS  PubMed  Google Scholar 

  • Ortega AD, Willers IM, Sala S, Cuezva JM (2010) Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J Cell Sci 123:2685–2696

    CAS  PubMed  Google Scholar 

  • Parlo RA, Coleman PS (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 259:9997–10003

    CAS  PubMed  Google Scholar 

  • Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM et al (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    CAS  PubMed  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    CAS  PubMed  Google Scholar 

  • Plas DR, Thompson CB (2002) Cell metabolism in the regulation of programmed cell death. Trends Endocrinol Metab 13:75–78

    PubMed  Google Scholar 

  • Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H et al (2011) Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 125:421–430

    CAS  PubMed  Google Scholar 

  • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pyronnet S, Sonenberg N (2001) Cell-cycle-dependent translational control. Curr Opin Genet Dev 11:13–18

    CAS  PubMed  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 102:5992–5997

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med 88:981–986

    PubMed Central  PubMed  Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676

    CAS  PubMed  Google Scholar 

  • Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G et al (1996) Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 23:1641–1674

    CAS  PubMed  Google Scholar 

  • Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D et al (2013) Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23:811–825

    CAS  PubMed  Google Scholar 

  • Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M et al (2012) Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2:328–343

    CAS  PubMed  Google Scholar 

  • Sanchez-Arago M, Cuezva JM (2011) The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J Transl Med 9:19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Arago M, Chamorro M, Cuezva JM (2010) Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis 31:567–576

    CAS  PubMed  Google Scholar 

  • Sanchez-Arago M, Formentini L, Garcia-Bermudez J, Cuezva JM (2012) IF1 reprograms energy metabolism and signals the oncogenic phenotype in cancer. Cell Cycle 11:2963–2964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Arago M, Formentini L, Cuezva JM (2013a) Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid Redox Signal 19:285–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Arago M, Garcia-Bermudez J, Martinez-Reyes I, Santacatterina F, Cuezva JM (2013b) Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Rep 14:638–644

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Arago M, Formentini L, Martinez-Reyes I, Garcia-Bermudez J, Santacatterina F, Sanchez-Cenizo L et al (2013c) Expression, regulation and clinical relevance of the ATPase inhibitory factor 1 in human cancers. Oncogenesis 2:e46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Cenizo L, Formentini L, Aldea M, Ortega AD, Garcia-Huerta P, Sanchez-Arago M et al (2010) Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+ -ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 285:25308–25313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santamaria G, Martinez-Diez M, Fabregat I, Cuezva JM (2006) Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+ -ATP synthase. Carcinogenesis 27:925–935

    CAS  PubMed  Google Scholar 

  • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373

    CAS  PubMed  Google Scholar 

  • Semenza GL (2008) Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life 60:591–597

    CAS  PubMed  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F et al (2009) Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA 106:7131–7136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS et al (2005) Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 65:3162–3170

    CAS  PubMed  Google Scholar 

  • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strauss M, Hofhaus G, Schroder RR, Kuhlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai ZL et al (2008) Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 60:510–516

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomiyama A, Serizawa S, Tachibana K, Sakurada K, Samejima H, Kuchino Y et al (2006) Critical role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak. J Natl Cancer Inst 98:1462–1473

    CAS  PubMed  Google Scholar 

  • Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M et al (2003) Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3:1620–1632

    CAS  PubMed  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR et al (2013) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol 76:325–334

    Google Scholar 

  • Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K et al (2013) PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23:287–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  • Wang R, Green DR (2012a) Metabolic checkpoints in activated T cells. Nat Immunol 13:907–915

    CAS  PubMed  Google Scholar 

  • Wang R, Green DR (2012b) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249:14–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warburg O (1930) Metabolism of tumors. Arnold Constable, London

    Google Scholar 

  • Warburg O (1956a) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  • Warburg O (1956b) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  • Warburg O (1966) Annual meeting of Nobelists at Lindau, Germany. English Edition by Dean Burk, National Cancer Institute, Bethesda, MD

    Google Scholar 

  • Weinhouse S (1976) The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 87:115–126

    CAS  PubMed  Google Scholar 

  • Willers IM, Cuezva JM (2011) Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. Biochim Biophys Acta 1807:543–551

    CAS  PubMed  Google Scholar 

  • Willers IM, Isidoro A, Ortega AD, Fernandez PL, Cuezva JM (2010) Selective inhibition of beta-F1-ATPase mRNA translation in human tumours. Biochem J 426:319–326

    CAS  PubMed  Google Scholar 

  • Willers IM, Martínez-Reyes I, Martínez-Diez M, Cuezva J (2012) miR-127-5p targets the 3’ UTR of human β-F1-ATPase mRNA and inhibits its translation. Biochim Biophys Acta 1817:838–848

    CAS  PubMed  Google Scholar 

  • Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM et al (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108:19611–19616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY et al (2004) Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90:2390–2396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283:20621–20627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    CAS  PubMed  Google Scholar 

  • Zhang HZ, Liu JG, Wei YP, Wu C, Cao YK, Wang M (2007) Expression of G3BP and RhoC in esophageal squamous carcinoma and their effect on prognosis. World J Gastroenterol 13:4126–4130

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the work, support, and ideas of many colleagues and collaborators, especially to Drs. María Sánchez-Aragó and Laura Formentini and to the excellent technical support provided by M. Chamorro and C. Nuñez de Arenas over all these years. Work in the authors’ laboratory was supported by grants from the Ministerio de Educación y Ciencia (BFU2010-18903), by the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), and by Comunidad de Madrid (S/2011-BMD-2402), Spain. The CBMSO receives an institutional grant from Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Cuezva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Martínez-Reyes, I., Cuezva, J.M. (2015). The Relevance of the Mitochondrial H+-ATP Synthase in Cancer Biology. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_11

Download citation

Publish with us

Policies and ethics