Skip to main content

Bacterial Protein Toxins Acting on Small GTPases

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 1

Abstract

Numerous bacterial protein toxins and effectors target eukaryotic cells by covalent modification of low molecular mass GTP-binding proteins to manipulate their switch functions. Frequent targets are Rho, Ras, and Rab proteins which are modified by ADP-ribosylation, adenylylation, mono-O-glycosylation, deamidation, transglutamination, phosphocholination, and proteolytic cleavage. Thereby, the GTPases are activated or inactivated. Other bacterial effectors manipulate the cellular functions of small GTPases by mimicking endogenous regulators of the switch proteins. They act as guanine nucleotide exchange factors (GEFs) or GTPase-activating proteins (GAPs). The chapter describes the bacterial toxins and effectors and discusses the functional consequences of their actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, toxins are designated as bacterial factors which are released from bacteria into the environment and then enter target cells independently of the pathogen. In contrast, bacterial effectors are introduced into host cells by an injection machinery of the bacteria as a result of direct contact of the pathogen with host cells.

References

  • Aepfelbacher M, Trasak C, Wilharm G, Wiedemann A, Trulzsch K, Krauss K, Gierschik P, Heesemann J (2003) Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J Biol Chem 278:33217–33223

    PubMed  CAS  Google Scholar 

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498

    PubMed  CAS  Google Scholar 

  • Aktories K, Barbieri JT (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3:397–410

    PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    PubMed  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    PubMed  CAS  Google Scholar 

  • Amimoto K, Noro T, Oishi E, Shimizu M (2007) A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 153:1198–1206

    PubMed  CAS  Google Scholar 

  • Arbeloa A, Bulgin RR, MacKenzie G, Shaw RK, Pallen MJ, Crepin VF, Berger CN, Frankel G (2008) Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell Microbiol 10:1429–1441

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN, Lea SM, Matthews S, Frankel G (2010) EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 12:654–664

    PubMed  CAS  PubMed Central  Google Scholar 

  • Augspach A, List JH, Wolf P, Bielek H, Schwan C, Elsasser-Beile U, Aktories K, Schmidt G (2013) Activation of RhoA, B, C by Yersinia Cytotoxic Necrotizing Factor (CNFy) induces apoptosis in LNCaP prostate cancer cells. Toxins (Basel) 5:2241–2257

    CAS  Google Scholar 

  • Aullo P, Giry M, Olsnes S, Popoff MR, Kocks C, Boquet P (1993) A chimeric toxin to study the role of the 21 kDa GTP binding protein rho in the control of actin microfilament assembly. EMBO J 12:921–931

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66:1364–1369

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK (1999) Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J Biol Chem 274:27407–27414

    PubMed  CAS  Google Scholar 

  • Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K (2001) Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J Biol Chem 276:10670–10676

    PubMed  CAS  Google Scholar 

  • Bartlett JG (2010) Clostridium difficile: progress and challenges. Ann N Y Acad Sci 1213:62–69

    PubMed  Google Scholar 

  • Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB (1978) Role of Clostridium difficile in antibiotic-associated pseudomembranous colitits. Gastroenterology 75:778–782

    PubMed  CAS  Google Scholar 

  • Belyi Y, Aktories K (2010) Bacterial toxin and effector glycosyltransferases. Biochim Biophys Acta 1800:134–143

    PubMed  CAS  Google Scholar 

  • Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006) Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci USA 103:16953–16958

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belyi Y, Tabakova I, Stahl M, Aktories K (2008) Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190:3026–3035

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bette P, Oksche A, Mauler F, Von Eichel-Streiber C, Popoff MR, Habermann E (1991) A comparative biochemical, pharmacological and immunological study of Clostridium novyi α-toxin, C. difficile toxin B and C.sordellii lethal toxin. Toxicon 29:877–887

    PubMed  CAS  Google Scholar 

  • Boriello SP, Aktories K (2005) Clostridium perfringens, Clostridium difficile and other Clostridium species. In: Boriello SP, Murray PR, Funke G (eds) Topley and Wilson’s microbiology and microbial infections. Edward Arnold, London, pp 1089–1136

    Google Scholar 

  • Buchwald G, Friebel A, Galan JE, Hardt WD, Wittinghofer A, Scheffzek K (2002) Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J 21:3286–3295

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buetow L, Flatau G, Chiu K, Boquet P, Ghosh P (2001) Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nat Struct Biol 8:584–588

    PubMed  CAS  Google Scholar 

  • Bulgin RR, Arbeloa A, Chung JC, Frankel G (2009) EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell Microbiol 11:217–229

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    PubMed  CAS  Google Scholar 

  • Busby JN, Panjikar S, Landsberg MJ, Hurst MR, Lott JS (2013) The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501:547–550

    PubMed  CAS  Google Scholar 

  • Busch C, Hofmann F, Selzer J, Munro J, Jeckel D, Aktories K (1998) A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 273:19566–19572

    PubMed  CAS  Google Scholar 

  • Buttner CR, Cornelis GR, Heinz DW, Niemann HH (2005) Crystal structure of Yersinia enterocolitica type III secretion chaperone SycT. Protein Sci 14:1993–2002

    PubMed  PubMed Central  Google Scholar 

  • Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C (1983) Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39:1300–1306

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J 8:1087–1092

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Tascon I, Neunuebel MR, Pallara C, Brady J, Kinch LN, Fernandez-Recio J, Rojas AL, Machner MP, Hierro A (2013) Structural basis for Rab1 De-AMPylation by the Legionella pneumophila Effector SidD. Plos Pathog 9:e1003382

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chung JW, Hong SJ, Kim KJ, Goti D, Stins MF, Shin S, Dawson VL, Dawson TM, Kim KS (2003) 37 kDa laminin receptor precusor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J Biol Chem 278:16857–16862

    PubMed  CAS  Google Scholar 

  • Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook:1–9

    Google Scholar 

  • Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell Invasion and Matricide during Photorhabdus luminescens Transmission by Heterorhabditis bacteriophora Nematodes. Appl Environ Microbiol 74:2275–2287

    PubMed  CAS  PubMed Central  Google Scholar 

  • de Rycke J, Mazars P, Nougayrede J-P, Tasca C, Boury M, Herault F, Valette A, Oswald E (1996) Mitotic block and delayed lethality in HeLa epithelial cells exposed to Escherichia coli BM2-1 producing cytotoxic necrotizing factor type 1. Infect Immun 64:1694–1705

    PubMed  PubMed Central  Google Scholar 

  • Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288

    PubMed  CAS  Google Scholar 

  • Diana G, Valentini G, Travaglione S, Falzano L, Pieri M, Zona C, Meschini S, Fabbri A, Fiorentini C (2007) Enhancement of learning and memory after activation of cerebral Rho GTPases. Proc Natl Acad Sci USA 104:636–641

    PubMed  CAS  PubMed Central  Google Scholar 

  • Diederen BM (2008) Legionella spp. and Legionnaires’ disease. J Infect 56:1–12

    PubMed  CAS  Google Scholar 

  • Dowen RH, Engel JL, Shao F, Ecker JR, Dixon JE (2009) A family of bacterial cysteine protease type III effectors utilizes acylation-dependent and -independent strategies to localize to plasma membranes. J Biol Chem 284:15867–15879

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564

    PubMed  CAS  Google Scholar 

  • Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K (2007) Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on a cysteine protease activity. J Biol Chem 282:25314–25321

    PubMed  CAS  Google Scholar 

  • Egerer M, Giesemann T, Herrmann C, Aktories K (2009) Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. J Biol Chem 284:3389–3395

    PubMed  CAS  Google Scholar 

  • Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR (2003) The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 278:45924–45930

    PubMed  CAS  Google Scholar 

  • Fahrer J, Kuban J, Heine K, Rupps G, Kaiser E, Felder E, Benz R, Barth H (2010) Selective and specific internalization of clostridial C3 ADP-ribosyltransferases into macrophages and monocytes. Cell Microbiol 12:233–247

    PubMed  CAS  Google Scholar 

  • Falbo V, Pace T, Picci L, Pizzi E, Caprioli A (1993) Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect Immun 61:4909–4914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fehr D, Burr SE, Gibert M, d’Alayer J, Frey J, Popoff MR (2007) Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton. J Biol Chem 282:28843–28852

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58:169–183

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D (2003) Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433–456

    PubMed  CAS  Google Scholar 

  • Fiorentini C, Matarrese P, Straface E, Falzano L, Donelli G, Boquet P, Malorni W (1998) Rho-dependent cell spreading activated by E. coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Differ 5:921–929

    PubMed  CAS  Google Scholar 

  • Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    PubMed  CAS  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    PubMed  CAS  Google Scholar 

  • Foxman B (2002) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113(Suppl 1A):5S–13S

    PubMed  Google Scholar 

  • Fu Y, Galan JE (1998) The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol 27:359–368

    PubMed  CAS  Google Scholar 

  • Fueller F, Schmidt G (2008) The polybasic region of Rho GTPases defines the cleavage by Yersinia enterocolitica outer protein T (YopT). Protein Sci 17:1456–1462

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galan JE, Fu Y (2000) Modulation of actin cytoskeleton by Salmonella GTPase activating protein SptP. Methods Enzymol 325:496–504

    PubMed  CAS  Google Scholar 

  • Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523

    PubMed  CAS  Google Scholar 

  • Genisyuerek S, Papatheodorou P, Guttenberg G, Schubert R, Benz R, Aktories K (2011) Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Mol Microbiol 79:1643–1654

    PubMed  CAS  Google Scholar 

  • Genth H, Aktories K, Just I (1999) Monoglucosylation of RhoA at Threonine-37 blocks cytosol-membrane cycling. J Biol Chem 274:29050–29056

    PubMed  CAS  Google Scholar 

  • Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K, Just I (2003) Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 278:28523–28527

    PubMed  CAS  Google Scholar 

  • Genth H, Dreger SC, Huelsenbeck J, Just I (2008) Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int J Biochem Cell Biol 40:592–597

    PubMed  CAS  Google Scholar 

  • Gerrard J, Waterfield N, Vohra R, Ffrench-Constant R (2004) Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect 6:229–237

    PubMed  CAS  Google Scholar 

  • Gerrard JG, Joyce SA, Clarke DJ, Ffrench-Constant RH, Nimmo GR, Looke DF, Feil EJ, Pearce L, Waterfield NR (2006) Nematode symbiont for Photorhabdus asymbiotica. Emerg Infect Dis 12:1562–1564

    PubMed  PubMed Central  Google Scholar 

  • Geyer M, Wilde C, Selzer J, Aktories K, Kalbitzer HR (2003) Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for the effector loop conformations observed by NMR spectroscopy. Biochemistry 42:11951–11959

    PubMed  CAS  Google Scholar 

  • Gill DM, Richardson SH (1980) Adenosine diphosphate-ribosylation of adenylate cyclase catalyzed by heat-labile enterotoxin of Escherichia coli: comparison with cholera toxin. J Infect Dis 141:64–70

    PubMed  CAS  Google Scholar 

  • Gill DM, Pappenheimer JAM, Brown R, Kurnick JT (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129:1–21

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goehring U-M, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    PubMed  CAS  Google Scholar 

  • Goody RS, Itzen A (2013) Modulation of small GTPases by legionella. Curr Top Microbiol Immunol 376:117–133

    PubMed  Google Scholar 

  • Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A, Goody RS (2012) Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31:1774–1784

    PubMed  CAS  PubMed Central  Google Scholar 

  • Greco A, Ho JG, Lin SJ, Palcic MM, Rupnik M, Ng KK (2006) Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 13:460–461

    PubMed  CAS  Google Scholar 

  • Guttenberg G, Papatheodorou P, Genisyuerek S, Lu W, Jank T, Einsle O, Aktories K (2011) Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin. J Biol Chem 286:14779–14786

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guttenberg G, Hornei S, Jank T, Schwan C, Lu W, Einsle O, Papatheodorou P, Aktories K (2012) Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J Biol Chem 287:24929–24940

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hall A (1993) Ras-related proteins. Curr Opin Cell Biol 5:265–268

    PubMed  CAS  Google Scholar 

  • Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10:31–54

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    PubMed  CAS  Google Scholar 

  • Ham H, Orth K (2011) De-AMPylation unmasked: modulation of host membrane trafficking. Sci Signal 4:e42

    Google Scholar 

  • Han S, Tainer JA (2002) The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int J Med Microbiol 291:523–529

    PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    PubMed  CAS  Google Scholar 

  • Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N, Koleske AJ, Fukui Y, Sasakawa C (2007) Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nat Cell Biol 9:121–128

    PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    PubMed  CAS  Google Scholar 

  • Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279:16026–16032

    PubMed  CAS  Google Scholar 

  • Hofmann F, Busch C, Prepens U, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272:11074–11078

    PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacryl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555

    PubMed  CAS  Google Scholar 

  • Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM (2009) Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16:853–860

    PubMed  CAS  Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365–369

    PubMed  CAS  Google Scholar 

  • Inoue S, Sugai M, Murooka Y, Paik S-Y, Hong Y-M, Ohgai H, Suginaka H (1991) Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus. Biochem Biophys Res Commun 174:459–464

    PubMed  CAS  Google Scholar 

  • Iriarte M, Cornelis GR (1998) YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol Microbiol 29:915–929

    PubMed  CAS  Google Scholar 

  • Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    PubMed  CAS  Google Scholar 

  • Jank T, Aktories K (2008) Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229

    PubMed  CAS  Google Scholar 

  • Jank T, Bogdanovic X, Wirth C, Haaf E, Spoerner M, Bohmer KE, Steinemann M, Orth JH, Kalbitzer HR, Warscheid B, Hunte C, Aktories K (2013) A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nat Struct Mol Biol 20:1273–1280

    PubMed  CAS  Google Scholar 

  • Just I, Gerhard R (2004) Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152:23–47

    PubMed  CAS  Google Scholar 

  • Just I, Mohr C, Schallehn G, Menard L, Didsbury JR, Vandekerckhove J, van Damme J, Aktories K (1992) Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J Biol Chem 267:10274–10280

    PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995a) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    PubMed  CAS  Google Scholar 

  • Just I, Wilm M, Selzer J, Rex G, Von Eichel-Streiber C, Mann M, Aktories K (1995b) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 270:13932–13936

    PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271:10149–10153

    PubMed  CAS  Google Scholar 

  • Kelly CP, LaMont JT (2008) Clostridium difficile–more difficult than ever. N Engl J Med 359:1932–1940

    PubMed  CAS  Google Scholar 

  • Khan NA, Wang Y, Kim KJ, Chung JW, Wass CA, Kim KS (2002) Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J Biol Chem 277:15607–15612

    PubMed  CAS  Google Scholar 

  • Kinch LN, Yarbrough ML, Orth K, Grishin NV (2009) Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS One 4:e5818

    PubMed  PubMed Central  Google Scholar 

  • Kingdon HS, Shapiro BM, Stadtman ER (1967) Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc Natl Acad Sci USA 58:1703–1710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klink BU, Barden S, Heidler TV, Borchers C, Ladwein M, Stradal TE, Rottner K, Heinz DW (2010) Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. J Biol Chem 285:17197–17208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krall R, Schmidt G, Aktories K, Barbieri JT (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68:6066–6068

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kubori T, Galan JE (2003) Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115:333–342

    PubMed  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    PubMed  CAS  Google Scholar 

  • Landsberg MJ, Jones SA, Rothnagel R, Busby JN, Marshall SD, Simpson RM, Lott JS, Hankamer B, Hurst MR (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci USA 108:20544–20549

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327:1139–1142

    PubMed  CAS  Google Scholar 

  • Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19:7537–7547

    PubMed  CAS  Google Scholar 

  • Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319:2329–2336

    PubMed  CAS  Google Scholar 

  • Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M (1997) Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 24:1061–1070

    PubMed  CAS  Google Scholar 

  • Lemonnier M, Landraud L, Lemichez E (2007) Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol Rev 31:515–534

    PubMed  CAS  Google Scholar 

  • Lerm M, Pop M, Fritz G, Aktories K, Schmidt G (2002) Proteasomal degradation of cytotoxic necrotizing factor 1-activated Rac. Infect Immun 70:4053–4058

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lim L, Hall C, Monfries C (1996) Regulation of actin cytoskeleton by Rho-family GTPases and their associated proteins. Cell Dev Biol 7:699–706

    CAS  Google Scholar 

  • Locher M, Lehnert B, Krauss K, Heesemann J, Groll M, Wilharm G (2005) Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT. J Biol Chem 280:31149–31155

    PubMed  CAS  Google Scholar 

  • Loizzo S, Rimondini R, Travaglione S, Fabbri A, Guidotti M, Ferri A, Campana G, Fiorentini C (2013) CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer’s disease. PLoS One 8:e65898

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu W, Du J, Stahl M, Tzivelekidis T, Belyi Y, Gerhardt S, Aktories K, Einsle O (2010) Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila. J Mol Biol 396:321–331

    PubMed  Google Scholar 

  • Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:974–977

    PubMed  CAS  Google Scholar 

  • Marvaud JC, Stiles BG, Chenal A, Gillet D, Gibert M, Smith LA, Popoff MR (2002) Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J Biol Chem 277:43659–43666

    PubMed  CAS  Google Scholar 

  • Masuda M, Betancourt L, Matsuzawa T, Kashimoto T, Takao T, Shimonishi Y, Horiguchi Y (2000) Activation of Rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J 19:521–530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mattoo S, Durrant E, Chen MJ, Xiao JY, Lazar CS, Manning G, Dixon JE, Worby CA (2011) Comparative analysis of Histophilus somni immunoglobulin-binding protein A (IbpA) with other fic domain-containing enzymes reveals differences in substrate and nucleotide specificities. J Biol Chem 286:32834–32842

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miki T, Akiba K, Iguchi M, Danbara H, Okada N (2011) The Chromobacterium violaceum type III effector CopE, a guanine nucleotide exchange factor for Rac1 and Cdc42, is involved in bacterial invasion of epithelial cells and pathogenesis. Mol Microbiol 80:1186–1203

    PubMed  CAS  Google Scholar 

  • Miraglia AG, Travaglione S, Meschini S, Falzano L, Matarrese P, Quaranta MG, Viora M, Fiorentini C, Fabbri A (2007) Cytotoxic necrotizing factor 1 prevents apoptosis via the Akt/IkappaB kinase pathway: role of nuclear factor-kappaB and Bcl-2. Mol Biol Cell 18:2735–2744

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mohammadi S, Isberg RR (2009) Yersinia pseudotuberculosis virulence determinants invasin, YopE, and YopT modulate RhoG activity and localization. Infect Immun 77:4771–4782

    PubMed  CAS  PubMed Central  Google Scholar 

  • Molinari G, Rohde M, Wilde C, Just I, Aktories K, Chhatwal GS (2006) Localization of the C3-like ADP-ribosyltransferase from Staphylococcus aureus during bacterial invasion of mammalian cells. Infect Immun 74:3673–3677

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949

    PubMed  Google Scholar 

  • Muller MP, Albers MF, Itzen A, Hedberg C (2014) Exploring adenylylation and phosphocholination as post-translational modifications. Chembiochem 15:19–26

    PubMed  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–977

    PubMed  CAS  Google Scholar 

  • Nagahama M, Ohkubo A, Oda M, Kobayashi K, Amimoto K, Miyamoto K, Sakurai J (2010) Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infect Immun 79:905–910

    PubMed  PubMed Central  Google Scholar 

  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456

    PubMed  CAS  PubMed Central  Google Scholar 

  • Newton A, Kendall M, Vugia DJ, Henao OL, Mahon BE (2012) Increasing rates of vibriosis in the United States, 1996-2010: review of surveillance data from 2 systems. Clin Infect Dis 54:S391–S395

    PubMed  Google Scholar 

  • Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4:77–81

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    PubMed  CAS  Google Scholar 

  • Ohlson MB, Huang Z, Alto NM, Blanc MP, Dixon JE, Chai J, Miller SI (2008) Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4:434–446

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C (2005) IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem 280:24022–24034

    PubMed  CAS  Google Scholar 

  • Orchard RC, Kittisopikul M, Altschuler SJ, Wu LF, Suel GM, Alto NM (2012) Identification of F-actin as the dynamic hub in a microbial-induced GTPase polarity circuit. Cell 148:803–815

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orth JH, Aktories K (2012) Molecular biology of Pasteurella multocida toxin. Curr Top Microbiol Immunol 361:73–92

    PubMed  CAS  Google Scholar 

  • Orth JH, Preuss I, Fester I, Schlosser A, Wilson BA, Aktories K (2009) Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc Natl Acad Sci USA 106:7179–7184

    PubMed  CAS  PubMed Central  Google Scholar 

  • Otto JC, Kim E, Young SG, Casey PJ (1999) Cloning and characterization of a mammalian prenyl protein-specific protease. J Biol Chem 274:8379–8382

    PubMed  CAS  Google Scholar 

  • Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9:2351–2359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Papatheodorou P, Zamboglou C, Genisyuerek S, Guttenberg G, Aktories K (2010) Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS One 5:e10673

    PubMed  PubMed Central  Google Scholar 

  • Park J, Kim JS, Jung KC, Lee HJ, Kim JI, Kim J, Lee JY, Park JB, Choi SY (2003) Exoenzyme Tat-C3 inhibits association of zymosan particles, phagocytosis, adhesion, and complement binding in macrophage cells. Mol Cells 16:216–223

    PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    PubMed  CAS  Google Scholar 

  • Pautsch A, Vogelsgesang M, Trankle J, Herrmann C, Aktories K (2005) Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme. EMBO J 24:3670–3680

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peel MM, Alfredson DA, Gerrard JG, Davis JM, Robson JM, McDougall RJ, Scullie BL, Akhurst RJ (1999) Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J Clin Microbiol 37:3647–3653

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pei S, Doye A, Boquet P (2001) Mutation of specific acidic residues of the CNF1 T domain into lysine alters cell membrane translocation of the toxin. Mol Microbiol 41:1237–1247

    PubMed  CAS  Google Scholar 

  • Petkovsek Z, Elersic K, Gubina M, Zgur-Bertok D, Starcic EM (2009) Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J Clin Microbiol 47:1811–1817

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pfeifer G, Schirmer J, Leemhuis J, Busch C, Meyer DK, Aktories K, Barth H (2003) Cellular uptake of Clostridium difficile toxin B: translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 278:44535–44541

    PubMed  CAS  Google Scholar 

  • Piteau M, Papatheodorou P, Schwan C, Schlosser A, Aktories K, Schmidt G (2014) Lu/BCAM adhesion glycoprotein is a receptor for Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1). PLoS Pathog 10:e1003884. doi:10.1371/journal.ppat.1003884

    PubMed  PubMed Central  Google Scholar 

  • Popoff MR, Geny B (2011) Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins. J Med Microbiol 60:1057–1069

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Res 18:1291

    PubMed  CAS  PubMed Central  Google Scholar 

  • Popoff MR, Chaves-Olarte E, Lemichez E, Von Eichel-Streiber C, Thelestam M, Chardin P, Cussac D, Antonny B, Chavrier P, Flatau G, Giry M, de Gunzburg J, Boquet P (1996) Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J Biol Chem 271:10217–10224

    PubMed  CAS  Google Scholar 

  • Qa’Dan M, Spyres LM, Ballard JD (2000) pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 68:2470–2474

    PubMed  PubMed Central  Google Scholar 

  • Reineke J, Tenzer S, Rupnik M, Koschinski A, Hasselmayer O, Schrattenholz A, Schild H, Von Eichel-Streiber C (2007) Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446:415–419

    PubMed  CAS  Google Scholar 

  • Richards AM, Von Dwingelo JE, Price CT, Abu KY (2013) Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 4:307–314

    PubMed  PubMed Central  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 13:2600–2610

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor- induced membrane ruffling. Cell 70:401–410

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Comoglio PM, Hall A (1995) Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol 15:1110–1122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rippere-Lampe KE, Lang M, Ceri H, Olson M, Lockman HA, O’Brien AD (2001a) Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model. Infect Immun 69:6515–6519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rippere-Lampe KE, O’Brien AD, Conran R, Lockman HA (2001b) Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69:3954–3964

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ritchie JM, Rui HP, Zhou XH, Iida T, Kodoma T, Ito S, Davis BM, Bronson RT, Waldor MK (2012) Inflammation and Disintegration of Intestinal Villi in an Experimental Model for Vibrio parahaemolyticus-Induced Diarrhea. Plos Pathog 8:e1002593

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rittinger K, Walker PA, Eccleston JF, Smerdon SJ, Gamblin SJ (1997) Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389:758–762

    PubMed  CAS  Google Scholar 

  • Rolando M, Munro P, Stefani C, Auberger P, Flatau G, Lemichez E (2009) Injection of Staphylococcus aureus EDIN by the Bacillus anthracis protective antigen machinery induces vascular permeability. Infect Immun 77:3596–3601

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roy CR, Mukherjee S (2009) Bacterial FIC proteins AMP up infection. Sci Signal 2:e14

    Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-Kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sahai E, Olson MF (2006) Purification of TAT-C3 exoenzyme. Methods Enzymol 406:128–140

    PubMed  CAS  Google Scholar 

  • Sauerborn M, Leukel P, Von Eichel-Streiber C (1997) The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality. FEMS Microbiol Lett 155:45–54

    PubMed  CAS  Google Scholar 

  • Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E, Pacaud P, Loirand G (2001) Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho-kinase. Circ Res 88:1102–1104

    PubMed  CAS  Google Scholar 

  • Schirmer J, Aktories K (2004) Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochim Biophys Acta 1673:66–74

    PubMed  CAS  Google Scholar 

  • Schmidt G, Aktories K (2000) Rho GTPase-activating toxins: cytotoxic necrotizing factors and dermonecrotic toxin. In: Balch WE, Der CJ, Hall A (eds) Regulators and effectors of small GTPases. Academic, San Diego, CA, pp 125–136

    Google Scholar 

  • Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic-necrotizing factor CNF1 from Escherichia coli possesses transglutaminase activity—cysteine-866 and histidine-881 are essential for enzyme activity. J Biol Chem 273:13669–13674

    PubMed  CAS  Google Scholar 

  • Schmidt G, Goehring U-M, Schirmer J, Lerm M, Aktories K (1999) Identification of the C-terminal part of Bordetella dermonecrotic toxin as a transglutaminase for Rho GTPases. J Biol Chem 274:31875–31881

    PubMed  CAS  Google Scholar 

  • Schmidt G, Goehring U-M, Schirmer J, Uttenweiler-Joseph S, Wilm M, Lohmann M, Giese A, Schmalzing G, Aktories K (2001) Lysine and polyamines are substrates for transglutamination of Rho by the Bordetella dermonecrotic toxin. Infect Immun 69:7663–7670

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schweer J, Kulkarni D, Kochut A, Pezoldt J, Pisano F, Pils MC, Genth H, Huehn J, Dersch P (2013) The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFY) enhances inflammation and Yop delivery during infection by activation of Rho GTPases. PLoS Pathog 9:e1003746

    PubMed  PubMed Central  Google Scholar 

  • Segal G, Feldman M, Zusman T (2005) The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 29:65–81

    PubMed  CAS  Google Scholar 

  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins—Effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304

    PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Selzer J, Hofmann F, Rex G, Wilm M, Mann M, Just I, Aktories K (1996) Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J Biol Chem 271:25173–25177

    PubMed  CAS  Google Scholar 

  • Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cycteine proteases functioning in bacterial pathogenesis. Cell 109:575–588

    PubMed  CAS  Google Scholar 

  • Shao F, Vacratsis PO, Bao Z, Bowers KE, Fierke CA, Dixon JE (2003) Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc Natl Acad Sci USA 100:904–909

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sheets JJ, Hey TD, Fencil KJ, Burton SL, Ni W, Lang AE, Benz R, Aktories K (2011) Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem 286:22742–22749

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shen A, Lupardus PJ, Gersch MM, Puri AW, Albrow VE, Garcia KC, Bogyo M (2011) Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol 18:364–371

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorg I, Goehring U-M, Aktories K, Schmidt G (2001) Recombinant Yersinia YopT leads to uncoupling of RhoA-effector interaction. Infect Immun 69:7535–7543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoll T, Markwirth G, Reipschlager S, Schmidt G (2009) A new member of a growing toxin family—Escherichia coli cytotoxic necrotizing factor 3 (CNF3). Toxicon 54:745–753

    PubMed  CAS  Google Scholar 

  • Sun J, Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10-regulator of kinase (Crk). J Biol Chem 278:32794–32800

    PubMed  CAS  Google Scholar 

  • Takai Y, Kaibuchi K, Kikuchi A, Sasaki T, Shirataki H (1993) Regulators of small GTPases. Ciba Found Symp 176:128–138

    PubMed  CAS  Google Scholar 

  • Tan Y, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tan Y, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA 108:21212–21217

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trulzsch K, Sporleder T, Igwe EI, Russmann H, Heesemann J (2004) Contribution of the major secreted yops of Yersinia enterocolitica O:8 to pathogenicity in the mouse infection model. Infect Immun 72:5227–5234

    PubMed  PubMed Central  Google Scholar 

  • Ui M (1984) Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol Sci 5:277–279

    CAS  Google Scholar 

  • Upadhyay A, Wu HL, Williams C, Field T, Galyov EE, van den Elsen JM, Bagby S (2008) The guanine-nucleotide-exchange factor BopE from Burkholderia pseudomallei adopts a compact version of the Salmonella SopE/SopE2 fold and undergoes a closed-to-open conformational change upon interaction with Cdc42. Biochem J 411:485–493

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304

    PubMed  CAS  Google Scholar 

  • Vetter IR, Hofmann F, Wohlgemuth S, Herrmann C, Just I (2000) Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J Mol Biol 301:1091–1095

    PubMed  CAS  Google Scholar 

  • Visvikis O, Maddugoda MP, Lemichez E (2010) Direct modifications of Rho proteins: deconstructing GTPase regulation. Biol Cell 102:377–389

    PubMed  CAS  Google Scholar 

  • Vogelsgesang M, Stieglitz B, Herrmann C, Pautsch A, Aktories K (2008) Crystal structure of the Clostridium limosum C3 exoenzyme. FEBS Lett 582(7):1032–1036

    PubMed  CAS  Google Scholar 

  • Von Eichel-Streiber C, Sauerborn M (1990) Clostridium difficile toxin A carries a C-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glycosyltransferases. Gene 96:107–113

    Google Scholar 

  • von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36:737–748

    Google Scholar 

  • Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 149:263–270

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waterfield NR, Bowen DJ, Fetherston JD, Perry RD, Ffrench-Constant RH RH (2001) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9:185–191

    PubMed  CAS  Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    PubMed  CAS  Google Scholar 

  • West RE, Moss J, Vaughan M, Liu T, Liu T-Y (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430

    PubMed  CAS  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    PubMed  CAS  Google Scholar 

  • Wiggins CAR, Munro S (1998) Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci USA 95:7945–7950

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilde C, Chhatwal GS, Schmalzing G, Aktories K, Just I (2001) A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J Biol Chem 276:9537–9542

    PubMed  CAS  Google Scholar 

  • Wilde C, Barth H, Sehr P, Han L, Schmidt M, Just I, Aktories K (2002) Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA. J Biol Chem 277:14771–14776

    PubMed  CAS  Google Scholar 

  • Winter-Vann AM, Casey PJ (2005) Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer 5:405–412

    PubMed  CAS  Google Scholar 

  • Winton MJ, Dubreuil CI, Lasko D, Leclerc N, McKerracher L (2002) Charcterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 277:32820–32829

    PubMed  CAS  Google Scholar 

  • Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, Mendez JC, Zekarias B, Lazar C, Dixon JE (2009) The fic domain: regulation of cell signaling by adenylylation. Mol Cell 34:93–103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xiao J, Worby CA, Mattoo S, Sankaran B, Dixon JE (2010) Structural basis of Fic-mediated adenylylation. Nat Struct Mol Biol 17:1004–1010

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu Y, Carr PD, Vasudevan SG, Ollis DL (2010) Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site. J Mol Biol 396:773–784

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y, Yoshida O (1995) Distribution of virulence factors in Escherichia coli isolated from urine of cystitis patients. Microbiol Immunol 39:401–404

    PubMed  CAS  Google Scholar 

  • Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–272

    PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    PubMed  CAS  Google Scholar 

  • Zhu M, Shao F, Innes RW, Dixon JE, Xu Z (2004) The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc Natl Acad Sci USA 101:302–307

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors’ studies reported were financially supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Aktories .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Aktories, K., Schmidt, G. (2014). Bacterial Protein Toxins Acting on Small GTPases. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_4

Download citation

Publish with us

Policies and ethics