Skip to main content

Abstract

Of the 20 Rho GTP-binding proteins in humans, 8 have atypical properties, which are also unusual within the Ras superfamily. These atypical proteins fall into four subfamilies: RhoU/RhoV, Rnd1/Rnd2/Rnd3, RhoH and RhoBTB1/RhoBTB2. These proteins are known or predicted to be predominantly GTP-bound in cells, because of changes in their ability to exchange GDP for GTP or to hydrolyse GTP. Apart from RhoH, they also have N-terminal and C-terminal extensions that give them unique interacting partners and functions. For example, RhoU can bind SH3 domain-containing proteins, Rnd proteins can bind to 14-3-3 proteins, and RhoBTB proteins can interact via their BTB domains with cullin-3, which is involved in proteasomal degradation. The proteins have been implicated in diverse functions, including cell adhesion and migration, vesicle trafficking and cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alan JK, Berzat AC, Dewar BJ, Graves LM, Cox AD (2010) Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol Cell Biol 30(17):4324–4338. doi:10.1128/MCB.01646-09

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alfano C, Viola L, Heng JI, Pirozzi M, Clarkson M, Flore G, De Maio A, Schedl A, Guillemot F, Studer M (2011) COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression. Development 138(21):4685–4697. doi:10.1242/dev.068031

    PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285(4):1353–1361. doi:10.1006/jmbi.1998.2394

    PubMed  CAS  Google Scholar 

  • Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B, Abo A (1998) Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 8(20):1125–1128

    PubMed  CAS  Google Scholar 

  • Aspenstrom P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377(Pt 2):327–337. doi:10.1042/BJ20031041

    PubMed  PubMed Central  Google Scholar 

  • Aspenstrom P, Ruusala A, Pacholsky D (2007) Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 313(17):3673–3679. doi:10.1016/j.yexcr.2007.07.022

    PubMed  Google Scholar 

  • Baekkeskov S, Kanaani J (2009) Palmitoylation cycles and regulation of protein function (Review). Mol Membr Biol 26(1):42–54. doi:10.1080/09687680802680108

    PubMed  CAS  Google Scholar 

  • Baker CM, Comrie WA, Hyun YM, Chung HL, Fedorchuk CA, Lim K, Brakebusch C, McGrath JL, Waugh RE, Meier-Schellersheim M, Kim M (2012) Opposing roles for RhoH GTPase during T-cell migration and activation. Proc Natl Acad Sci U S A 109(26):10474–10479. doi:10.1073/pnas.1114214109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beder LB, Gunduz M, Ouchida M, Gunduz E, Sakai A, Fukushima K, Nagatsuka H, Ito S, Honjo N, Nishizaki K, Shimizu K (2006) Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. J Cancer Res Clin Oncol 132(1):19–27. doi:10.1007/s00432-005-0033-0

    PubMed  CAS  Google Scholar 

  • Berthold J, Schenkova K, Ramos S, Miura Y, Furukawa M, Aspenstrom P, Rivero F (2008a) Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes–evidence for an autoregulatory mechanism. Exp Cell Res 314(19):3453–3465. doi:10.1016/j.yexcr.2008.09.005

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berthold J, Schenkova K, Rivero F (2008b) Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol Sin 29(3):285–295. doi:10.1111/j.1745-7254.2008.00773.x

    PubMed  CAS  Google Scholar 

  • Berzat AC, Buss JE, Chenette EJ, Weinbaum CA, Shutes A, Der CJ, Minden A, Cox AD (2005) Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J Biol Chem 280(38):33055–33065. doi:10.1074/jbc.M507362200

    PubMed  CAS  Google Scholar 

  • Bhavsar PJ, Infante E, Khwaja A, Ridley AJ (2013) Analysis of Rho GTPase expression in T-ALL identifies RhoU as a target for Notch involved in T-ALL cell migration. Oncogene 32(2):198–208. doi:10.1038/onc.2012.42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boureux A, Vignal E, Faure S, Fort P (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24(1):203–216. doi:10.1093/molbev/msl145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brady DC, Alan JK, Madigan JP, Fanning AS, Cox AD (2009) The transforming Rho family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol Cell Biol 29(4):1035–1049. doi:10.1128/MCB.00336-08

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brazier H, Pawlak G, Vives V, Blangy A (2009) The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 41(6):1391–1401. doi:10.1016/j.biocel.2008.12.007

    PubMed  CAS  Google Scholar 

  • Chae HD, Lee KE, Williams DA, Gu Y (2008) Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood 111(5):2597–2605. doi:10.1182/blood-2007-06-093237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chang FK, Sato N, Kobayashi-Simorowski N, Yoshihara T, Meth JL, Hamaguchi M (2006) DBC2 is essential for transporting vesicular stomatitis virus glycoprotein. J Mol Biol 364(3):302–308. doi:10.1016/j.jmb.2006.09.026

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen J, Zhang M (2013) The Par3/Par6/aPKC complex and epithelial cell polarity. Exp Cell Res 319(10):1357–1364. doi:10.1016/j.yexcr.2013.03.021

    PubMed  CAS  Google Scholar 

  • Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F (2009) Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35(6):841–855. doi:10.1016/j.molcel.2009.09.004

    PubMed  CAS  Google Scholar 

  • Chenette EJ, Abo A, Der CJ (2005) Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem 280(14):13784–13792. doi:10.1074/jbc.M411300200

    PubMed  CAS  Google Scholar 

  • Cherry LK, Li X, Schwab P, Lim B, Klickstein LB (2004) RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nat Immunol 5(9):961–967. doi:10.1038/ni1103

    PubMed  CAS  Google Scholar 

  • Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M (2007) The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 120(Pt 11):1927–1934. doi:10.1242/jcs.03456

    PubMed  CAS  Google Scholar 

  • Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, Fieschi C, Lim A, Abhyankar A, Gineau L, Mueller-Fleckenstein I, Schmidt M, Taieb A, Krueger J, Abel L, Tangye SG, Orth G, Williams DA, Casanova JL, Jouanguy E (2012) Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest 122(9):3239–3247. doi:10.1172/JCI62949

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dorn T, Kuhn U, Bungartz G, Stiller S, Bauer M, Ellwart J, Peters T, Scharffetter-Kochanek K, Semmrich M, Laschinger M, Holzmann B, Klinkert WE, Straten PT, Kollgaard T, Sixt M, Brakebusch C (2007) RhoH is important for positive thymocyte selection and T-cell receptor signaling. Blood 109(6):2346–2355. doi:10.1182/blood-2006-04-019034

    PubMed  CAS  Google Scholar 

  • Dummler B, Ohshiro K, Kumar R, Field J (2009) Pak protein kinases and their role in cancer. Cancer Metastasis Rev 28(1–2):51–63. doi:10.1007/s10555-008-9168-1

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2(3):344–358. doi:10.1177/1947601911411084

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fiegen D, Blumenstein L, Stege P, Vetter IR, Ahmadian MR (2002) Crystal structure of Rnd3/RhoE: functional implications. FEBS Lett 525(1–3):100–104

    PubMed  CAS  Google Scholar 

  • Fort P, Guemar L, Vignal E, Morin N, Notarnicola C, de Santa BP, Faure S (2011) Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration. Dev Biol 350(2):451–463. doi:10.1016/j.ydbio.2010.12.011

    PubMed  CAS  Google Scholar 

  • Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J, Settleman J (1996) Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16(6):2689–2699

    PubMed  CAS  PubMed Central  Google Scholar 

  • Freeman SN, Ma Y, Cress WD (2008) RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J Biol Chem 283(4):2353–2362. doi:10.1074/jbc.M705986200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fueller F, Kubatzky KF (2008) The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Commun Signal 6:6. doi:10.1186/1478-811x-6-6

    PubMed  PubMed Central  Google Scholar 

  • Garavini H, Riento K, Phelan JP, McAlister MS, Ridley AJ, Keep NH (2002) Crystal structure of the core domain of RhoE/Rnd3: a constitutively activated small G protein. Biochemistry 41(20):6303–6310

    PubMed  CAS  Google Scholar 

  • Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch RM, Perez-Roger I, Jurdic P, Machuca-Gayet I (2014) Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell 25(3):380–396. doi:10.1091/mbc.E13-07-0363

    PubMed  PubMed Central  Google Scholar 

  • Gottesbuhren U, Garg R, Riou P, McColl B, Brayson D, Ridley AJ (2013) Rnd3 induces stress fibres in endothelial cells through RhoB. Biol Open 2(2):210–216. doi:10.1242/bio.20123574

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gu Y, Chae HD, Siefring JE, Jasti AC, Hildeman DA, Williams DA (2006) RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol 7(11):1182–1190. doi:10.1038/ni1396

    PubMed  CAS  Google Scholar 

  • Gu Y, Jasti AC, Jansen M, Siefring JE (2005) RhoH, a hematopoietic-specific Rho GTPase, regulates proliferation, survival, migration, and engraftment of hematopoietic progenitor cells. Blood 105(4):1467–1475. doi:10.1182/blood-2004-04-1604

    PubMed  CAS  Google Scholar 

  • Guasch RM, Scambler P, Jones GE, Ridley AJ (1998) RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18(8):4761–4771

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, Walsh T, Welcsh P, King MC, Wigler MH (2002) DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci USA 99(21):13647–13652. doi:10.1073/pnas.212516099

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F (2008) Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455(7209):114–118

    PubMed  CAS  Google Scholar 

  • Heng JI, Qu Z, Ohtaka-Maruyama C, Okado H, Kasai M, Castro D, Guillemot F, Tan SS (2013) The Zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cerebral cortical development. Cereb Cortex. doi:10.1093/cercor/bht277

    PubMed  Google Scholar 

  • Hota PK, Buck M (2012) Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 69(22):3765–3805. doi:10.1007/s00018-012-1019-0

    PubMed  CAS  Google Scholar 

  • Komander D, Garg R, Wan PT, Ridley AJ, Barford D (2008) Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure. EMBO J 27(23):3175–3185

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B (2001) Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 194(6):855–861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lahousse S, Smorowski AL, Denis C, Lantoine D, Kerckaert JP, Galiegue-Zouitina S (2004) Structural features of hematopoiesis-specific RhoH/ARHH gene: high diversity of 5′-UTR in different hematopoietic lineages suggests a complex post-transcriptional regulation. Gene 343(1):55–68. doi:10.1016/j.gene.2004.08.022

    PubMed  CAS  Google Scholar 

  • Laviolette MJ, Nunes P, Peyre JB, Aigaki T, Stewart BA (2005) A genetic screen for suppressors of Drosophila NSF2 neuromuscular junction overgrowth. Genetics 170(2):779–792. doi:10.1534/genetics.104.035691

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li X, Bu X, Lu B, Avraham H, Flavell RA, Lim B (2002) The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 22(4):1158–1171

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loebel DA, Studdert JB, Power M, Radziewic T, Jones V, Coultas L, Jackson Y, Rao RS, Steiner K, Fossat N, Robb L, Tam PP (2011) Rhou maintains the epithelial architecture and facilitates differentiation of the foregut endoderm. Development 138(20):4511–4522. doi:10.1242/dev.063867

    PubMed  CAS  Google Scholar 

  • Lonjedo M, Poch E, Mocholi E, Hernandez-Sanchez M, Ivorra C, Franke TF, Guasch RM, Perez-Roger I (2013) The Rho family member RhoE interacts with Skp2 and is degraded at the proteasome during cell cycle progression. J Biol Chem 288(43):30872–30882. doi:10.1074/jbc.M113.511105

    PubMed  CAS  Google Scholar 

  • Luo H, Zou J, Dong Z, Zeng Q, Wu D, Liu L (2012) Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma. Biochem J 442(2):311–321. doi:10.1042/BJ20111517

    PubMed  CAS  Google Scholar 

  • Lydeard JR, Schulman BA, Harper JW (2013) Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep 14(12):1050–1061. doi:10.1038/embor.2013.173

    PubMed  CAS  Google Scholar 

  • Madigan JP, Bodemann BO, Brady DC, Dewar BJ, Keller PJ, Leitges M, Philips MR, Ridley AJ, Der CJ, Cox AD (2009) Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation. Biochem J 424(1):153–161

    PubMed  CAS  PubMed Central  Google Scholar 

  • McKinnon CM, Lygoe KA, Skelton L, Mitter R, Mellor H (2008) The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene 27(54):6856–6865. doi:10.1038/onc.2008.317

    PubMed  CAS  Google Scholar 

  • Mocholi E, Ballester-Lurbe B, Arque G, Poch E, Peris B, Guerri C, Dierssen M, Guasch RM, Terrado J, Perez-Roger I (2011) RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice. PLoS One 6(4):e19236. doi:10.1371/journal.pone.0019236

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morreale A, Venkatesan M, Mott HR, Owen D, Nietlispach D, Lowe PN, Laue ED (2000) Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat Struct Biol 7(5):384–388. doi:10.1038/75158

    PubMed  CAS  Google Scholar 

  • Naji L, Pacholsky D, Aspenstrom P (2011) ARHGAP30 is a Wrch-1-interacting protein involved in actin dynamics and cell adhesion. Biochem Biophys Res Commun 409(1):96–102. doi:10.1016/j.bbrc.2011.04.116

    PubMed  CAS  Google Scholar 

  • Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141(1):187–197

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pacary E, Azzarelli R, Guillemot F (2013) Rnd3 coordinates early steps of cortical neurogenesis through actin-dependent and -independent mechanisms. Nat Commun 4:1635. doi:10.1038/ncomms2614

    PubMed  PubMed Central  Google Scholar 

  • Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, Parras C, Bell DM, Ridley AJ, Parsons M, Guillemot F (2011) Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron 69(6):1069–1084. doi:10.1016/j.neuron.2011.02.018

    PubMed  CAS  Google Scholar 

  • Pelham CJ, Ketsawatsomkron P, Groh S, Grobe JL, de Lange WJ, Ibeawuchi SR, Keen HL, Weatherford ET, Faraci FM, Sigmund CD (2012) Cullin-3 regulates vascular smooth muscle function and arterial blood pressure via PPARgamma and RhoA/Rho-kinase. Cell Metab 16(4):462–472. doi:10.1016/j.cmet.2012.08.011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peris B, Gonzalez-Granero S, Ballester-Lurbe B, Garcia-Verdugo JM, Perez-Roger I, Guerri C, Terrado J, Guasch RM (2012) Neuronal polarization is impaired in mice lacking RhoE expression. J Neurochem 121(6):903–914. doi:10.1111/j.1471-4159.2012.07733.x

    PubMed  CAS  Google Scholar 

  • Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Lai JL, Daudignon A, Adenis C, Bauters F, Fenaux P, Kerckaert JP, Galiegue-Zouitina S (2000) Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 19(16):2023–2032. doi:10.1038/sj.onc.1203521

    PubMed  CAS  Google Scholar 

  • Ramos S, Khademi F, Somesh BP, Rivero F (2002) Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 298(2):147–157

    PubMed  CAS  Google Scholar 

  • Riento K, Totty N, Villalonga P, Garg R, Guasch R, Ridley AJ (2005) RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J 24(6):1170–1180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Riou P, Kjaer S, Garg R, Purkiss A, George R, Cain RJ, Bineva G, Reymond N, McColl B, Thompson AJ, O'Reilly N, McDonald NQ, Parker PJ, Ridley AJ (2013) 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell 153(3):640–653. doi:10.1016/j.cell.2013.03.044

    PubMed  CAS  PubMed Central  Google Scholar 

  • Riou P, Villalonga P, Ridley AJ (2010) Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. BioEssays 32(11):986–992. doi:10.1002/bies.201000060

    PubMed  CAS  Google Scholar 

  • Risse SL, Vaz B, Burton MF, Aspenstrom P, Piekorz RP, Brunsveld L, Ahmadian MR (2013) SH3-mediated targeting of Wrch1/RhoU by multiple adaptor proteins. Biol Chem 394(3):421–432. doi:10.1515/hsz-2012-0246

    PubMed  CAS  Google Scholar 

  • Rivero F, Dislich H, Glockner G, Noegel AA (2001) The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res 29(5):1068–1079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, Currin RO, Cox AD, Wilson O, Kirschmeier P, Der CJ (2008) Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283(37):25150–25163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruusala A, Aspenstrom P (2008) The atypical Rho GTPase Wrch1 collaborates with the nonreceptor tyrosine kinases Pyk2 and Src in regulating cytoskeletal dynamics. Mol Cell Biol 28(5):1802–1814. doi:10.1128/MCB.00201-07

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sanchez-Aguilera A, Rattmann I, Drew DZ, Muller LU, Summey V, Lucas DM, Byrd JC, Croce CM, Gu Y, Cancelas JA, Johnston P, Moritz T, Williams DA (2010) Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia. Leukemia 24(1):97–104. doi:10.1038/leu.2009.217

    PubMed  CAS  Google Scholar 

  • Saras J, Wollberg P, Aspenstrom P (2004) Wrch1 is a GTPase-deficient Cdc42-like protein with unusual binding characteristics and cellular effects. Exp Cell Res 299(2):356–369. doi:10.1016/j.yexcr.2004.05.029

    PubMed  CAS  Google Scholar 

  • Schenkova K, Lutz J, Kopp M, Ramos S, Rivero F (2012) MUF1/leucine-rich repeat containing 41 (LRRC41), a substrate of RhoBTB-dependent cullin 3 ubiquitin ligase complexes, is a predominantly nuclear dimeric protein. J Mol Biol 422(5):659–673. doi:10.1016/j.jmb.2012.06.016

    PubMed  CAS  Google Scholar 

  • Shellenberger TD, Wang M, Gujrati M, Jayakumar A, Strieter RM, Burdick MD, Ioannides CG, Efferson CL, El-Naggar AK, Roberts D, Clayman GL, Frederick MJ (2004) BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res 64(22):8262–8270. doi:10.1158/0008-5472.CAN-04-2056

    PubMed  CAS  Google Scholar 

  • Shepelev MV, Chernoff J, Korobko IV (2011) Rho family GTPase Chp/RhoV induces PC12 apoptotic cell death via JNK activation. Small GTPases 2(1):17–26. doi:10.4161/sgtp.2.1.15229

    PubMed  PubMed Central  Google Scholar 

  • Shin YJ, Kim EH, Roy A, Kim JH (2013) Evidence for a Novel Mechanism of the PAK1 Interaction with the Rho-GTPases Cdc42 and Rac. PLoS One 8(8):e71495. doi:10.1371/journal.pone.0071495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shutes A, Berzat AC, Cox AD, Der CJ (2004) Atypical mechanism of regulation of the Wrch-1 Rho family small GTPase. Curr Biol 14(22):2052–2056. doi:10.1016/j.cub.2004.11.011

    PubMed  CAS  Google Scholar 

  • Siripurapu V, Meth J, Kobayashi N, Hamaguchi M (2005) DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J Mol Biol 346(1):83–89. doi:10.1016/j.jmb.2004.11.043

    PubMed  CAS  Google Scholar 

  • Starnes T, Rasila KK, Robertson MJ, Brahmi Z, Dahl R, Christopherson K, Hromas R (2006) The chemokine CXCL14 (BRAK) stimulates activated NK cell migration: implications for the downregulation of CXCL14 in malignancy. Exp Hematol 34(8):1101–1105. doi:10.1016/j.exphem.2006.05.015

    PubMed  CAS  Google Scholar 

  • Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6(10):R82. doi:10.1186/gb-2005-6-10-r82

    PubMed  PubMed Central  Google Scholar 

  • Talens-Visconti R, Peris B, Guerri C, Guasch RM (2010) RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling. J Neurochem 112(4):1074–1087

    PubMed  CAS  Google Scholar 

  • Tanaka H, Katoh H, Negishi M (2006) Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity. J Biol Chem 281(15):10355–10364

    PubMed  CAS  Google Scholar 

  • Tang W, Wang C, Fu F, Chen Q (2013) RhoBTB2 gene in breast cancer is silenced by promoter methylation. Int J Mol Med. doi:10.3892/ijmm.2013.1593

    PubMed Central  Google Scholar 

  • Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15(14):1796–1807. doi:10.1101/gad.894301

    PubMed  CAS  PubMed Central  Google Scholar 

  • Troeger A, Chae HD, Senturk M, Wood J, Williams DA (2013) A unique carboxy-terminal insert domain in the hematopoietic-specific, GTPase-deficient RhoGTPase RhoH regulates post-translational processing. J Biol Chem. doi:10.1074/jbc.M113.505727

    PubMed  Google Scholar 

  • Troeger A, Johnson AJ, Wood J, Blum WG, Andritsos LA, Byrd JC, Williams DA (2012) RhoH is critical for cell-microenvironment interactions in chronic lymphocytic leukemia in mice and humans. Blood 119(20):4708–4718. doi:10.1182/blood-2011-12-395939

    PubMed  CAS  PubMed Central  Google Scholar 

  • Troeger A, Williams DA (2013) Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 319(15):2375–2383. doi:10.1016/j.yexcr.2013.07.002

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vega FM, Ridley AJ (2008) Rho GTPases in cancer biology. FEBS Lett 582(14):2093–2101

    PubMed  CAS  Google Scholar 

  • Villalonga P, Fernandez de Mattos S, Ridley AJ (2009) RhoE inhibits 4E-BP1 phosphorylation and eIF4E function impairing cap-dependent translation. J Biol Chem 284(51):35287–35296

    PubMed  CAS  PubMed Central  Google Scholar 

  • Villalonga P, Guasch RM, Riento K, Ridley AJ (2004) RhoE inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol 24(18):7829–7840

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang H, Hota PK, Tong Y, Li B, Shen L, Nedyalkova L, Borthakur S, Kim S, Tempel W, Buck M, Park HW (2011a) Structural basis of Rnd1 binding to plexin Rho GTPase binding domains (RBDs). J Biol Chem 286(29):26093–26106. doi:10.1074/jbc.M110.197053

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang H, Zeng X, Fan Z, Lim B (2010) RhoH plays distinct roles in T-cell migrations induced by different doses of SDF1 alpha. Cell Signal 22(7):1022–1032. doi:10.1016/j.cellsig.2010.02.005

    PubMed  CAS  Google Scholar 

  • Wang H, Zeng X, Fan Z, Lim B (2011b) RhoH modulates pre-TCR and TCR signalling by regulating LCK. Cell Signal 23(1):249–258. doi:10.1016/j.cellsig.2010.09.009

    PubMed  CAS  Google Scholar 

  • Weisz Hubsman M, Volinsky N, Manser E, Yablonski D, Aronheim A (2007) Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp. Biochem J 404(3):487–497. doi:10.1042/BJ20061696

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ, Hansen SH (2003) Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol 13(13):1106–1115

    PubMed  CAS  Google Scholar 

  • Wilkins A, Ping Q, Carpenter CL (2004) RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev 18(8):856–861. doi:10.1101/gad.1177904

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu X, Frost JA (2006) Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem Biophys Res Commun 351(2):328–335. doi:10.1016/j.bbrc.2006.09.172

    PubMed  CAS  Google Scholar 

  • Xia W, Li J, Chen L, Huang B, Li S, Yang G, Ding H, Wang F, Liu N, Zhao Q, Fang T, Song T, Wang T, Shao N (2010) MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol Cell Biochem 344(1–2):261–266. doi:10.1007/s11010-010-0550-2

    PubMed  CAS  Google Scholar 

  • Xu RS, Wu XD, Zhang SQ, Li CF, Yang L, Li DD, Zhang BG, Zhang Y, Jin JP, Zhang B (2013) The tumor suppressor gene RhoBTB1 is a novel target of miR-31 in human colon cancer. Int J Oncol 42(2):676–682. doi:10.3892/ijo.2012.1746

    PubMed  CAS  Google Scholar 

  • Yoshihara T, Collado D, Hamaguchi M (2007) Cyclin D1 down-regulation is essential for DBC2’s tumor suppressor function. Biochem Biophys Res Commun 358(4):1076–1079. doi:10.1016/j.bbrc.2007.05.037

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang JS, Koenig A, Young C, Billadeau DD (2011) GRB2 couples RhoU to epidermal growth factor receptor signaling and cell migration. Mol Biol Cell 22(12):2119–2130. doi:10.1091/mbc.E10-12-0969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao C, Slevin JT, Whiteheart SW (2007) Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 581(11):2140–2149. doi:10.1016/j.febslet.2007.03.032

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Ridley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Borda-d’Agua, B., Infante, E., Riou, P., Tajadura, V., Ridley, A.J. (2014). Atypical Rho Family Members. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_15

Download citation

Publish with us

Policies and ethics