Skip to main content

Classical Rho Proteins: Biochemistry of Molecular Switch Function and Regulation

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 1

Abstract

Rho family proteins are involved in an array of cellular processes by modulating cytoskeletal organization, transcription, and cell cycle progression. The signaling functions of Rho family proteins are based on the formation of distinctive protein–protein complexes with their regulators and effectors. A necessary precondition for such differential interactions is an intact molecular switch function, which is a hallmark of most members of the Rho family. Such classical Rho proteins cycle between an inactive GDP-bound state and an active GTP-bound state. They specifically interact via a consensus-binding sites called switch I and II with three structurally and functionally unrelated classes of regulatory proteins, such as guanine nucleotide dissociation inhibitors (GDIs), guanine nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs). Extensive studies in the last 25 years have provided invaluable insights into the molecular mechanisms underlying regulation and signal transduction of the Rho family proteins. In this chapter, we will review common features of Rho protein regulations and highlight specific aspects of their structure–function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Aliphatic amino acid

Bcr:

Breakpoint cluster region protein

C:

Cysteine

CZH:

CDM-zizimin homology

Db1:

Diffuse B-cell lymphoma

DH:

Dbl homology domain

DHR1&2:

DOCK-homology regions 1 and 2

ERM:

Ezrin/radixin/moesin

GAPs:

GTPase-activating proteins

GDIs:

Guanine nucleotide dissociation inhibitors

GDP:

Guanosine diphosphate

GEFs:

Guanine nucleotide exchange factors

Gln:

Glutamine

Gly:

Glycine

GTP:

Guanosine triphosphate

p75NTR :

Neurotrophin receptor p75

PAK1:

p21-activated kinase 1

PH:

Pleckstrin homology domain

PKA:

Protein kinase A

PKC:

Protein kinase C

P-loop:

Phosphate-binding loop

X:

Any amino acid

References

  • Adra CN, Manor D, Ko JL et al (1997) RhoGDIgamma: a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc Natl Acad Sci USA 94:4279–4284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ahmadian MR, Mittal R, Hall A et al (1997) Aluminum fluoride associates with the small guanine nucleotide binding proteins. FEBS Lett 408:315–318

    Article  PubMed  CAS  Google Scholar 

  • Aittaleb M, Boguth CA, Tesmer JJ (2010) Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol Pharmacol 77:111–125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  PubMed  CAS  Google Scholar 

  • Bouguet-Bonnet S, Buck M (2008) Compensatory and long-range changes in picosecond-nanosecond main-chain dynamics upon complex formation: 15N relaxation analysis of the free and bound states of the ubiquitin-like domain of human plexin-B1 and the small GTPase Rac1. J Mol Biol 377:1474–1487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boulter E, Garcia-Mata R (2010) RhoGDI: a rheostat for the Rho switch. Small GTPases 1:65–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Boureux A, Vignal E, Faure S et al (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24:203–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bulgin R, Raymond B, Garnett JA et al (2010) Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infect Immun 78:1417–1425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Cherfils J, Chardin P (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24:306–311

    Article  PubMed  CAS  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  PubMed  CAS  Google Scholar 

  • Chow CR, Suzuki N, Kawamura T et al (2013) Modification of p115RhoGEF Ser(330) regulates its RhoGEF activity. Cell Signal 25:2085–2092

    Article  PubMed  CAS  Google Scholar 

  • Chuang TH, Xu X, Knaus UG et al (1993) GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein. J Biol Chem 268:775–778

    PubMed  CAS  Google Scholar 

  • Cook DR, Rossman KL, Der CJ (2013) Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 16:362

    Google Scholar 

  • DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363

    Article  PubMed  CAS  Google Scholar 

  • DerMardirossian C, Schnelzer A, Bokoch GM (2004) Phosphorylation of RhoGDI by Pak1 mediates, dissociation of Rac GTPase. Mol Cell 15:117–127

    Article  PubMed  CAS  Google Scholar 

  • DerMardirossian C, Rocklin G, Seo JY et al (2006) Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol Biol Cell 17:4760–4768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dubash AD, Wennerberg K, Garcia-Mata R et al (2007) A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. J Cell Sci 120:3989–3998

    Article  PubMed  CAS  Google Scholar 

  • Dvorsky R, Ahmadian MR (2004) Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep 5:1130–1136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eberth A, Dvorsky R, Becker CF et al (2005) Monitoring the real-time kinetics of the hydrolysis reaction of guanine nucleotide-binding proteins. Biol Chem 386:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Eberth A, Lundmark R, Gremer L et al (2009) A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family. Biochem J 417:371–377

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Cerione RA (2004) Structural elements, mechanism, and evolutionary convergence of Rho protein-guanine nucleotide exchange factor complexes. Biochemistry 43:837–842

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  • Eva A, Vecchio G, Rao CD et al (1988) The predicted DBL oncogene product defines a distinct class of transforming proteins. Proc Natl Acad Sci USA 85:2061–2065

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Evdokimov AG, Tropea JE, Routzahn KM et al (2002) Crystal structure of the Yersinia pestis GTPase activator YopE. Protein Sci 11:401–408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fan L, Mellor H (2012) The small Rho GTPase Rif and actin cytoskeletal remodelling. Biochem Soc Trans 40:268–272

    Article  PubMed  CAS  Google Scholar 

  • Fidyk NJ, Cerione RA (2002) Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis. Biochemistry 41:15644–15653

    Article  PubMed  CAS  Google Scholar 

  • Fiegen D, Blumenstein L, Stege P et al (2002) Crystal structure of Rnd3/RhoE: functional implications. FEBS Lett 525:100–104

    Article  PubMed  CAS  Google Scholar 

  • Fiegen D, Haeusler LC, Blumenstein L et al (2004) Alternative splicing of Rac1 generates Rac1b, a self-activating GTPase. J Biol Chem 279:4743–4749

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto Y, Kaibuchi K, Hori Y et al (1990) Molecular-cloning and characterization of a novel type of regulatory protein (Gdi) for the Rho proteins, Ras P21-Like small Gtp-binding proteins. Oncogene 5:1321–1328

    PubMed  CAS  Google Scholar 

  • Gad AK, Aspenstrom P (2010) Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking. Cell Signal 22:183–189

    Article  PubMed  CAS  Google Scholar 

  • Garavini H, Riento K, Phelan JP et al (2002) Crystal structure of the core domain of RhoE/Rnd3: a constitutively activated small G protein. Biochemistry 41:6303–6310

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Boulter E, Burridge K (2011) The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garrett MD, Self AJ, van Oers C et al (1989) Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    PubMed  CAS  Google Scholar 

  • Graham DL, Eccleston JF, Lowe PN (1999) The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride. Biochemistry 38:985–991

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Zheng Y, Williams DA (2005) RhoH GTPase: a key regulator of hematopoietic cell proliferation and apoptosis? Cell Cycle 4:201–202

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Ahmadian MR, Goody RS (2005) Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism. Biochemistry 44:15423–15429

    Article  PubMed  CAS  Google Scholar 

  • Haeusler LC, Hemsath L, Fiegen D et al (2006) Purification and biochemical properties of Rac1, 2, 3 and the splice variant Rac1b. Methods Enzymol 406:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2:a001818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hancock JF, Hall A (1993) A novel role for RhoGDI as an inhibitor of GAP proteins. EMBO J 12:1915–1921

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hart MJ, Eva A, Evans T et al (1991) Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354:311–314

    Article  PubMed  CAS  Google Scholar 

  • Hart MJ, Maru Y, Leonard D et al (1992) A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs. Science 258:812–815

    Article  PubMed  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka K, Kaibuchi K, Ando S et al (1992) Both stimulatory and inhibitory GDP/GTP exchange proteins, smg GDS and rho GDI, are active on multiple small GTP-binding proteins. Biochem Biophys Res Commun 182:921–930

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GR, Cerione RA (2002) Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett 513:85–91

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson JP, Eccleston JF (2000) Mechanism of nucleotide release from Rho by the GDP dissociation stimulator protein. Biochemistry 39:11348–11359

    Article  PubMed  CAS  Google Scholar 

  • Ismail SA, Vetter IR, Sot B et al (2010) The structure of an Arf-ArfGAP complex reveals a Ca2+ regulatory mechanism. Cell 141:812–821

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal M, Gremer L, Dvorsky R et al (2011) Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). J Biol Chem 286:18202–18212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jaiswal M, Dubey BN, Koessmeier KT et al (2012) Biochemical assays to characterize Rho GTPases. Methods Mol Biol 827:37–58

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal M, Dvorsky R, Ahmadian MR (2013a) Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins. J Biol Chem 288:4486–4500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jaiswal M, Fansa EK, Dvorsky R et al (2013b) New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol Chem 394:89–95

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal M, Dvorsky R, Amin E et al (2014) Functional crosstalk between Ras and Rho pathways: p120RasGAP competitively inhibits the RhoGAP activity of Deleted in Liver Cancer (DLC) tumor suppressors by masking its catalytic arginine finger. J Biol Chem 289:6839–6849

    PubMed  CAS  Google Scholar 

  • Joneson T, Bar-Sagi D (1997) Ras effectors and their role in mitogenesis and oncogenesis. J Mol Med (Berl) 75:587–593

    Article  CAS  Google Scholar 

  • Jordan P, Brazao R, Boavida MG et al (1999) Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18:6835–6839

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Der CJ, Campbell SL (2001) The insert region of Rac1 is essential for membrane ruffling but not cellular transformation. Mol Cell Biol 21:2847–2857

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Klebe C, Prinz H, Wittinghofer A et al (1995) The kinetic mechanism of Ran–nucleotide exchange catalyzed by RCC1. Biochemistry 34:12543–12552

    Article  PubMed  CAS  Google Scholar 

  • Lammers M, Meyer S, Kuhlmann D et al (2008) Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem 283:35236–35246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lancaster CA, Taylor-Harris PM, Self AJ et al (1994) Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases. J Biol Chem 269:1137–1142

    PubMed  CAS  Google Scholar 

  • Leonard D, Hart MJ, Platko JV et al (1992) The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J Biol Chem 267:22860–22868

    PubMed  CAS  Google Scholar 

  • Li X, Bu X, Lu B et al (2002) The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 22:1158–1171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ligeti E, Dagher MC, Hernandez SE et al (2004) Phospholipids can switch the GTPase substrate preference of a GTPase-activating protein. J Biol Chem 279:5055–5058

    Article  PubMed  CAS  Google Scholar 

  • Loirand G, Scalbert E, Bril A et al (2008) Rho exchange factors in the cardiovascular system. Curr Opin Pharmacol 8:174–180

    Article  PubMed  CAS  Google Scholar 

  • Mayer S, Kumar R, Jaiswal M et al (2013) Collybistin activation by GTP-TC10 enhances postsynaptic gephyrin clustering and hippocampal GABAergic neurotransmission. Proc Natl Acad Sci USA 110:20795–20800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meller N, Merlot S, Guda C (2005) CZH proteins: a new family of Rho-GEFs. J Cell Sci 118:4937–4946

    Article  PubMed  CAS  Google Scholar 

  • Minoshima Y, Kawashima T, Hirose K et al (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4:549–560

    Article  PubMed  CAS  Google Scholar 

  • Mitin N, Betts L, Yohe ME et al (2007) Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression. Nat Struct Mol Biol 14:814–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moon SY, Zheng Y (2003) Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 13:13–22

    Article  PubMed  CAS  Google Scholar 

  • Moskwa P, Paclet MH, Dagher MC et al (2005) Autoinhibition of p50 Rho GTPase-activating protein (GAP) is released by prenylated small GTPases. J Biol Chem 280:6716–6720

    Article  PubMed  CAS  Google Scholar 

  • Mulinari S, Hacker U (2010) Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 1:28–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulloy JC, Cancelas JA, Filippi MD et al (2010) Rho GTPases in hematopoiesis and hemopathies. Blood 115:936–947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nassar N, Hoffman GR, Manor D et al (1998) Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat Struct Biol 5:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Nisimoto Y, Freeman JL, Motalebi SA et al (1997) Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J Biol Chem 272:18834–18841

    Article  PubMed  CAS  Google Scholar 

  • Ohga N, Kikuchi A, Ueda T et al (1989) Rabbit intestine contains a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. Biochem Biophys Res Commun 163:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Eathiraj S, Munson M et al (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442:303–306

    Article  PubMed  CAS  Google Scholar 

  • Peck J, Douglas Gt WCH et al (2002) Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett 528:27–34

    Article  PubMed  CAS  Google Scholar 

  • Pick E, Gorzalczany Y, Engel S (1993) Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages. Eur J Biochem 217:441–455

    Article  PubMed  CAS  Google Scholar 

  • Riou P, Villalonga P, Ridley AJ (2010) Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. Bioessays 32:986–992

    Article  PubMed  CAS  Google Scholar 

  • Rittinger K (2009) Snapshots form a big picture of guanine nucleotide exchange. Sci Signal 2:pe63

    PubMed  Google Scholar 

  • Rittinger K, Walker PA, Eccleston JF et al (1997) Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389:758–762

    Article  PubMed  CAS  Google Scholar 

  • Roberts PJ, Mitin N, Keller PJ et al (2008) Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 283:25150–25163

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rojas RJ, Yohe ME, Gershburg S et al (2007) Galphaq directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. J Biol Chem 282:29201–29210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rose R, Weyand M, Lammers M et al (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435:513–518

    Article  PubMed  CAS  Google Scholar 

  • Rossman KL, Worthylake DK, Snyder JT et al (2002) Functional analysis of cdc42 residues required for Guanine nucleotide exchange. J Biol Chem 277:50893–50898

    Article  PubMed  CAS  Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MG, Weise C, Mirold S et al (1999) Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J Biol Chem 274:30501–30509

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR (2005) GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci 62:3014–3038

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338

    Article  PubMed  CAS  Google Scholar 

  • Scherle P, Behrens T, Staudt LM (1993) Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc Natl Acad Sci USA 90:7568–7572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609

    Article  PubMed  CAS  Google Scholar 

  • Shutes A, Berzat AC, Chenette EJ et al (2006) Biochemical analyses of the Wrch atypical Rho family GTPases. Methods Enzymol 406:11–26

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SK, Wheelock RH, Aaronson SA et al (1986) Identification of the protein encoded by the human diffuse B-cell lymphoma (dbl) oncogene. Proc Natl Acad Sci USA 83:8868–8872

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stebbins CE, Galan JE (2000) Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell 6:1449–1460

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Sasaki T, Mammoto A et al (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23371–23375

    Article  PubMed  CAS  Google Scholar 

  • Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86

    Article  PubMed  CAS  Google Scholar 

  • Thapar R, Karnoub AE, Campbell SL (2002) Structural and biophysical insights into the role of the insert region in Rac1 function. Biochemistry 41:3875–3883

    Article  PubMed  CAS  Google Scholar 

  • Tnimov Z, Guo Z, Gambin Y et al (2012) Quantitative analysis of prenylated RhoA interaction with its chaperone, RhoGDI. J Biol Chem 287:26549–26562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Troeger A, Chae HD, Senturk M et al (2013) A unique carboxyl-terminal insert domain in the hematopoietic-specific, GTPase-deficient Rho GTPase RhoH regulates post-translational processing. J Biol Chem 288:36451–36462

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Viaud J, Gaits-Iacovoni F, Payrastre B (2012) Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 52:303–314

    Article  PubMed  CAS  Google Scholar 

  • Vigil D, Cherfils J, Rossman KL et al (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vlahou G, Rivero F (2006) Rho GTPase signaling in Dictyostelium discoideum: insights from the genome. Eur J Cell Biol 85:947–959

    Article  PubMed  CAS  Google Scholar 

  • Walker SJ, Brown HA (2002) Specificity of Rho insert-mediated activation of phospholipase D1. J Biol Chem 277:26260–26267

    Article  PubMed  CAS  Google Scholar 

  • Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971

    Article  PubMed  CAS  Google Scholar 

  • Wurtele M, Wolf E, Pederson KJ et al (2001) How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat Struct Biol 8:23–26

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6:461–467

    PubMed  CAS  Google Scholar 

  • Yang XY, Guan M, Vigil D et al (2009) p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene 28:1401–1409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yohe ME, Rossman K, Sondek J (2008) Role of the C-terminal SH3 domain and N-terminal tyrosine phosphorylation in regulation of Tim and related Dbl-family proteins. Biochemistry 47:6827–6839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zalcman G, Closson V, Camonis J et al (1996) RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG. J Biol Chem 271:30366–30374

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Zheng Y (1998) Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1. Biochemistry 37:5249–5257

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Kaibuchi K, Quilliam LA (2001) The insert region of RhoA is essential for Rho kinase activation and cellular transformation. Mol Cell Biol 21:5287–5298

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ahmadian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Zhang, SC. et al. (2014). Classical Rho Proteins: Biochemistry of Molecular Switch Function and Regulation. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_14

Download citation

Publish with us

Policies and ethics