Skip to main content

The Coordinated Biology and Signaling Partners of Ral G-Proteins

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 1

Abstract

The Ras-like (Ral) guanyl nucleotide-binding proteins, RALA and RALB, are highly similar proteins, which occupy sometimes overlapping, convergent, or divergent roles in regulating distinct biological processes. As downstream signaling partners of oncogenic Ras, these two proteins have been described to be hyper-activated in tumors to support aberrant biology during oncogenic transformation. To regulate a varied collection of normal and oncogenic biological processes, Ral G-proteins engage with six upstream RalGEF proteins, two upstream RalGAP complexes, and at least five distinct downstream effector pathways. Further specification of Ral signaling activity is ascribed to distinct posttranslational modifications of RALA, RALB, their upstream regulators, and their effectors. Emerging signaling paradigms within Ral signaling networks provide important insight into the signaling architectures exhibited by not only Ral G-proteins but also the wider range of Ras superfamily small G-proteins as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasubramanian N, Meier JA, Scott DW, Norambuena A, White MA, Schwartz MA (2010) RalA-exocyst complex regulates integrin-dependent membrane raft exocytosis and growth signaling. Curr Biol 20(1):75–79. doi:10.1016/j.cub.2009.11.016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430(6996):257–263. doi:10.1038/nature02761

    Article  PubMed  CAS  Google Scholar 

  • Bodemann BO, White MA (2008) Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer 8(2):133–140. doi:10.1038/nrc2296

    Article  PubMed  CAS  Google Scholar 

  • Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA (2011) RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144(2):253–267. doi:10.1016/j.cell.2010.12.018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bose A, Guilherme A, Robida SI, Nicoloro SM, Zhou QL, Jiang ZY, Pomerleau DP, Czech MP (2002) Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420(6917):821–824. doi:10.1038/nature01246

    Article  PubMed  CAS  Google Scholar 

  • Buss H, Dorrie A, Schmitz ML, Hoffmann E, Resch K, Kracht M (2004) Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 279(53):55633–55643. doi:10.1074/jbc.M409825200

    Article  PubMed  CAS  Google Scholar 

  • Camonis JH, White MA (2005) Ral GTPases: corrupting the exocyst in cancer cells. Trends Cell Biol 15(6):327–332. doi:10.1016/j.tcb.2005.04.002

    Article  PubMed  CAS  Google Scholar 

  • Capilla E, Suzuki N, Pessin JE, Hou JC (2007) The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment. Mol Endocrinol 21(12):3087–3099. doi:10.1210/me.2006-0476

    Article  PubMed  CAS  Google Scholar 

  • Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, Camonis J (2008) Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. EMBO J 27(18):2375–2387. doi:10.1038/emboj.2008.166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chardin P, Tavitian A (1986) The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5(9):2203–2208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR (2007) Activation of RalA is required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev Cell 13(3):391–404. doi:10.1016/j.devcel.2007.07.007

    Article  PubMed  CAS  Google Scholar 

  • Chen XW, Leto D, Xiong T, Yu G, Cheng A, Decker S, Saltiel AR (2011) A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Mol Biol Cell 22(1):141–152. doi:10.1091/mbc.E10-08-0665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chien Y, White MA (2003) RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4(8):800–806. doi:10.1038/sj.embor.embor899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, Kopelovich L, Gale M Jr, Yeaman C, Camonis JH, Zhao Y, White MA (2006) RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127(1):157–170. doi:10.1016/j.cell.2006.08.034

    Article  PubMed  CAS  Google Scholar 

  • Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004(250):RE13. doi:10.1126/stke.2502004re13

    PubMed  PubMed Central  Google Scholar 

  • del Pozo MA, Alderson NB, Kiosses WB, Chiang HH, Anderson RG, Schwartz MA (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303(5659):839–842. doi:10.1126/science.1092571

    Article  PubMed  Google Scholar 

  • del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG, Schwartz MA (2005) Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7(9):901–908. doi:10.1038/ncb1293

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191(1):155–168. doi:10.1083/jcb.201002100

    Article  PubMed  PubMed Central  Google Scholar 

  • Feig LA (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol 13(8):419–425

    Article  PubMed  CAS  Google Scholar 

  • Feig LA, Urano T, Cantor S (1996) Evidence for a Ras/Ral signaling cascade. Trends Biochem Sci 21(11):438–441

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491–496. doi:10.1038/ni921

    Article  PubMed  CAS  Google Scholar 

  • Frankel P, Aronheim A, Kavanagh E, Balda MS, Matter K, Bunney TD, Marshall CJ (2005) RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. EMBO J 24(1):54–62. doi:10.1038/sj.emboj.7600497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick P (2000) Protein complexes in transport vesicle targeting. Trends Cell Biol 10(6):251–255

    Article  PubMed  CAS  Google Scholar 

  • Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, Der CJ, Counter CM (2002) Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 16(16):2045–2057. doi:10.1101/gad.993902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21(4):537–542. doi:10.1016/j.ceb.2009.04.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hiscott J (2004) Another detour on the Toll road to the interferon antiviral response. Nat Struct Mol Biol 11(11):1028–1030. doi:10.1038/nsmb1104-1028

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991. doi:10.1091/mbc.E08-12-1248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hsu SC, TerBush D, Abraham M, Guo W (2004) The exocyst complex in polarized exocytosis. Int Rev Cytol 233:243–265. doi:10.1016/S0074-7696(04)33006-8

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252. doi:10.1016/j.cmet.2007.03.006

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Imamura T, Babendure JL, Lu JC, Olefsky JM (2005) Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. J Biol Chem 280(51):42300–42306. doi:10.1074/jbc.M510920200

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR (2003) The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422(6932):629–633. doi:10.1038/nature01533

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Chiang SH, Chang L, Chen XW, Saltiel AR (2006) Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 17(5):2303–2311. doi:10.1091/mbc.E06-01-0030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Issaq SH, Lim KH, Counter CM (2010) Sec5 and Exo84 foster oncogenic ras-mediated tumorigenesis. Mol Cancer Res 8(2):223–231. doi:10.1158/1541-7786.MCR-09-0189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT (2005) Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J 24(12):2064–2074. doi:10.1038/sj.emboj.7600699

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Joneson T, White MA, Wigler MH, Bar-Sagi D (1996) Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271(5250):810–812

    Article  PubMed  CAS  Google Scholar 

  • Jullien-Flores V, Mahe Y, Mirey G, Leprince C, Meunier-Bisceuil B, Sorkin A, Camonis JH (2000) RLIP76, an effector of the GTPase Ral, interacts with the AP2 complex: involvement of the Ral pathway in receptor endocytosis. J Cell Sci 113(Pt 16):2837–2844

    PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. doi:10.1093/emboj/19.21.5720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812. doi:10.1242/jcs.01131

    Article  PubMed  CAS  Google Scholar 

  • Kashatus DF, Lim KH, Brady DC, Pershing NL, Cox AD, Counter CM (2011) RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13(9):1108–1115. doi:10.1038/ncb2310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105. doi:10.1038/nature04734

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988. doi:10.1038/ni1243

    Article  PubMed  CAS  Google Scholar 

  • Kfir S, Ehrlich M, Goldshmid A, Liu X, Kloog Y, Henis YI (2005) Pathway- and expression level-dependent effects of oncogenic N-Ras: p27(Kip1) mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling. Mol Cell Biol 25(18):8239–8250. doi:10.1128/MCB.25.18.8239-8250.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim JH, Lee SD, Han JM, Lee TG, Kim Y, Park JB, Lambeth JD, Suh PG, Ryu SH (1998) Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. FEBS Lett 430(3):231–235

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Dunzendorfer S, Soldau K, Tobias PS (2006) Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity 24(2):153–163. doi:10.1016/j.immuni.2005.12.012

    Article  PubMed  CAS  Google Scholar 

  • Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7(6):533–545. doi:10.1016/j.ccr.2005.04.030

    Article  PubMed  CAS  Google Scholar 

  • Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM (2006) Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16(24):2385–2394. doi:10.1016/j.cub.2006.10.023

    Article  PubMed  CAS  Google Scholar 

  • Linnemann T, Kiel C, Herter P, Herrmann C (2002) The activation of RalGDS can be achieved independently of its Ras binding domain. Implications of an activation mechanism in Ras effector specificity and signal distribution. J Biol Chem 277(10):7831–7837. doi:10.1074/jbc.M110800200

    Article  PubMed  CAS  Google Scholar 

  • Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J, Jiang H, Feig LA, Morris AJ, Kahn RA, Foster DA (1998) Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci USA 95(7):3632–3637

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin TD, Samuel JC, Routh ED, Der CJ, Yeh JJ (2011) Activation and involvement of Ral GTPases in colorectal cancer. Cancer Res 71(1):206–215. doi:10.1158/0008-5472.CAN-10-1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin TD, Mitin N, Cox AD, Yeh JJ, Der CJ (2012) Phosphorylation by protein kinase Calpha regulates RalB small GTPase protein activation, subcellular localization, and effector utilization. J Biol Chem 287(18):14827–14836. doi:10.1074/jbc.M112.344986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, Der CJ (2013) Ral and Rheb GTPase Activating Proteins Integrate mTOR and GTPase Signaling in Aging, Autophagy, and Tumor Cell Invasion. Mol Cell 53:209–220. doi:10.1016/j.molcel.2013.12.004

    Article  Google Scholar 

  • McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101(1):233–238. doi:10.1073/pnas.2237236100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McWhirter SM, Tenoever BR, Maniatis T (2005) Connecting mitochondria and innate immunity. Cell 122(5):645–647. doi:10.1016/j.cell.2005.08.026

    Article  PubMed  CAS  Google Scholar 

  • Miinea CP, Sano H, Kane S, Sano E, Fukuda M, Peranen J, Lane WS, Lienhard GE (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391(Pt 1):87–93. doi:10.1042/BJ20050887

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mishra PJ, Ha L, Rieker J, Sviderskaya EV, Bennett DC, Oberst MD, Kelly K, Merlino G (2010) Dissection of RAS downstream pathways in melanomagenesis: a role for Ral in transformation. Oncogene 29(16):2449–2456. doi:10.1038/onc.2009.521

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998a) A protein conjugation system essential for autophagy. Nature 395(6700):395–398. doi:10.1038/26506

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998b) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273(51):33889–33892

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4(1):66–72. doi:10.1038/ncb728

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA (2003) Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 278(51):51743–51748. doi:10.1074/jbc.M308702200

    Article  PubMed  CAS  Google Scholar 

  • Musteanu M, Blaas L, Zenz R, Svinka J, Hoffmann T, Grabner B, Schramek D, Kantner HP, Muller M, Kolbe T, Rulicke T, Moriggl R, Kenner L, Stoiber D, Penninger JM, Popper H, Casanova E, Eferl R (2012) A mouse model to identify cooperating signaling pathways in cancer. Nat Methods 9(9):897–900. doi:10.1038/nmeth.2130

    Article  PubMed  CAS  Google Scholar 

  • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, Cecconi F (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15(4):406–416. doi:10.1038/ncb2708

    Article  PubMed  CAS  Google Scholar 

  • Neyraud V, Aushev VN, Hatzoglou A, Meunier B, Cascone I, Camonis J (2012) RalA and RalB proteins are ubiquitinated GTPases, and ubiquitinated RalA increases lipid raft exposure at the plasma membrane. J Biol Chem 287(35):29397–29405. doi:10.1074/jbc.M112.357764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Omidvar N, Pearn L, Burnett AK, Darley RL (2006) Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras. Mol Cell Biol 26(10):3966–3975. doi:10.1128/MCB.26.10.3966-3975.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41(4):458–470. doi:10.1016/j.molcel.2011.01.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oxford G, Smith SC, Hampton G, Theodorescu D (2007) Expression profiling of Ral-depleted bladder cancer cells identifies RREB-1 as a novel transcriptional Ral effector. Oncogene 26(50):7143–7152. doi:10.1038/sj.onc.1210521

    Article  PubMed  CAS  Google Scholar 

  • Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, Marshall CJ (2012) Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol 22(21):2063–2068. doi:10.1016/j.cub.2012.09.013

    Article  PubMed  CAS  Google Scholar 

  • Ramocki MB, White MA, Konieczny SF, Taparowsky EJ (1998) A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis. J Biol Chem 273(28):17696–17701

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183. doi:10.1016/j.ccr.2004.07.009

    Article  PubMed  CAS  Google Scholar 

  • Rebhun JF, Chen H, Quilliam LA (2000) Identification and characterization of a new family of guanine nucleotide exchange factors for the ras-related GTPase Ral. J Biol Chem 275(18):13406–13410

    Article  PubMed  CAS  Google Scholar 

  • Romanov J, Walczak M, Ibiricu I, Schuchner S, Ogris E, Kraft C, Martens S (2012) Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 31(22):4304–4317. doi:10.1038/emboj.2012.278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosse C, Hatzoglou A, Parrini MC, White MA, Chavrier P, Camonis J (2006) RalB mobilizes the exocyst to drive cell migration. Mol Cell Biol 26(2):727–734. doi:10.1128/MCB.26.2.727-734.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295(1):E29–E37. doi:10.1152/ajpendo.90331.2008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278(17):14599–14602. doi:10.1074/jbc.C300063200

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Eguez L, Teruel MN, Fukuda M, Chuang TD, Chavez JA, Lienhard GE, McGraw TE (2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 5(4):293–303. doi:10.1016/j.cmet.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300(5622):1148–1151. doi:10.1126/science.1081315

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Xu L, Foster DA (2001) Role for phospholipase D in receptor-mediated endocytosis. Mol Cell Biol 21(2):595–602. doi:10.1128/MCB.21.2.595-602.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13(3):255–263. doi:10.1038/ni.2215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shirakawa R, Fukai S, Kawato M, Higashi T, Kondo H, Ikeda T, Nakayama E, Okawa K, Nureki O, Kimura T, Kita T, Horiuchi H (2009) Tuberous sclerosis tumor suppressor complex-like complexes act as GTPase-activating proteins for Ral GTPases. J Biol Chem 284(32):21580–21588. doi:10.1074/jbc.M109.012112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simicek M, Lievens S, Laga M, Guzenko D, Aushev VN, Kalev P, Baietti MF, Strelkov SV, Gevaert K, Tavernier J, Sablina AA (2013) The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response. Nat Cell Biol 15(10):1220–1230. doi:10.1038/ncb2847

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981. doi:10.1093/emboj/20.21.5971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tazat K, Harsat M, Goldshmid-Shagal A, Ehrlich M, Henis YI (2013) Dual effects of Ral-activated pathways on p27 localization and TGF-beta signaling. Mol Biol Cell 24(11):1812–1824. doi:10.1091/mbc.E13-01-0007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13(15):1259–1268

    Article  PubMed  CAS  Google Scholar 

  • Vigil D, Cherfils J, Rossman KL, Der CJ (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10(12):842–857. doi:10.1038/nrc2960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vitale N, Mawet J, Camonis J, Regazzi R, Bader MF, Chasserot-Golaz S (2005) The Small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. J Biol Chem 280(33):29921–29928. doi:10.1074/jbc.M413748200

    Article  PubMed  CAS  Google Scholar 

  • Ward Y, Wang W, Woodhouse E, Linnoila I, Liotta L, Kelly K (2001) Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways. Mol Cell Biol 21(17):5958–5969

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Watson RT, Kanzaki M, Pessin JE (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25(2):177–204. doi:10.1210/er.2003-0011

    Article  PubMed  CAS  Google Scholar 

  • White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler MH (1995) Multiple Ras functions can contribute to mammalian cell transformation. Cell 80(4):533–541

    Article  PubMed  CAS  Google Scholar 

  • Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):444–451

    Article  PubMed  CAS  Google Scholar 

  • Wolthuis RM, de Ruiter ND, Cool RH, Bos JL (1997) Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J 16(22):6748–6761. doi:10.1093/emboj/16.22.6748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA (2005) Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12(10):879–885. doi:10.1038/nsmb987

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M, Kelly K (2007) Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol 27(21):7538–7550. doi:10.1128/MCB.00955-07

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T (2004) Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279(41):43027–43034. doi:10.1074/jbc.M402264200

    Article  PubMed  CAS  Google Scholar 

  • Zipfel PA, Brady DC, Kashatus DF, Ancrile BD, Tyler DS, Counter CM (2010) Ral activation promotes melanomagenesis. Oncogene 29(34):4859–4864. doi:10.1038/onc.2010.224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Bodemann, B.O., White, M.A. (2014). The Coordinated Biology and Signaling Partners of Ral G-Proteins. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1806-1_12

Download citation

Publish with us

Policies and ethics