Skip to main content

Aktueller Stand der Forschung

  • Chapter
  • First Online:
Klinische Psychologie bei Querschnittlähmung

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ (2011) Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 6:367–406

    Article  PubMed Central  PubMed  Google Scholar 

  • Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190:17–31

    Article  PubMed  Google Scholar 

  • Barbeau H, Rossignol S (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 546:250–260

    Article  PubMed  Google Scholar 

  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  PubMed  Google Scholar 

  • Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo‐controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:122–1236

    Article  Google Scholar 

  • Chernykh ER, Stupak VV, Muradov GM, Sizikov MYU, Shevela EY, Leplina OY, Tikhonova MA, Kulagin AD, Lisukov IA, Ostanin AA (2007) Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 143:543–547

    Article  PubMed  Google Scholar 

  • Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28:1951–1961

    Article  PubMed  Google Scholar 

  • Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    Article  PubMed Central  PubMed  Google Scholar 

  • Curt A (2012) Human neural stem cells in chronic spinal cord injury. Expert Opin Biol Ther 12:271–273

    Article  PubMed  Google Scholar 

  • Deumens R, Koopmans GC, Joosten EA (2005) Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol 77:57–89

    Article  PubMed  Google Scholar 

  • Dietz V (2012) Neuronal plasticity after a human spinal cord injury: positive and negative effects. Exp Neurol 235:110–115

    Article  PubMed  Google Scholar 

  • Dietz V, Curt A (2012) Translating preclinical approaches into human application. Spinal Cord Injuries E‐Book: Handbook of Clinical Neurology Series 109:399–408

    Google Scholar 

  • Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord‐injured persons. J Appl Physiol 96:1954–1960

    Article  PubMed  Google Scholar 

  • Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205

    Article  PubMed  Google Scholar 

  • Fedirchuk B, Nielsen J, Petersen N, Hultborn H (1998) Pharmacologically evoked fictive motor patterns in the acutely spinalized marmoset monkey (Callithrix jacchus). Exp Brain Res 122:351–361

    Article  PubMed  Google Scholar 

  • Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28:787–796

    Article  PubMed  Google Scholar 

  • Feraboli-Lohnherr D, Barthe JY, Orsal D (1999) Serotonin‐induced activation of the network for locomotion in adult spinal rats. J Neurosci Res 55:87–98

    Article  PubMed  Google Scholar 

  • Filli L, Schwab ME (2012) The rocky road to translation in spinal cord repair. Ann Neurol 72:491–501

    Article  PubMed  Google Scholar 

  • Forssberg H, Grillner S (1973) The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res 50:184–186

    Article  PubMed  Google Scholar 

  • Fouad K, Klusman I, Schwab ME (2004) Regenerating corticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti‐Nogo‐A antibody IN‐1. Eur J Neurosci 20:2479–2482

    Article  PubMed  Google Scholar 

  • Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2006) Nogo‐A‐specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 12:790–792

    Article  PubMed  Google Scholar 

  • Galtrey CM, Asher RA, Nothias F, Fawcett JW (2007) Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 130:926–939

    Article  PubMed  Google Scholar 

  • GrandPré T, Li S, Strittmatter SM (2002) Nogo‐66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551

    Article  PubMed  Google Scholar 

  • Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DSL, Tator C, Teng A, Toups EG, Harrop JS, Aarabi B, Shaffrey CI, Johnson MM, Harkema SJ, Boakye M, Guest JD, Wilson JR (2014) A Prospective, Multicenter, Phase I Matched‐Comparison Group Trial of Safety, Pharmacokinetics, and Preliminary Efficacy of Riluzole in Patients with Traumatic Spinal Cord Injury. J Neurotrauma 31:239–255

    Article  PubMed Central  PubMed  Google Scholar 

  • Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25:E14

    Article  PubMed  Google Scholar 

  • Hollis ER, Jamshidi P, Löw K, Blesch A, Tuszynski MH (2009) Induction of corticospinal regeneration by lentiviral trkB‐induced Erk activation. Proc Natl Acad Sci USA 106:7215–7220

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubli M, Dietz V (2013) The physiological basis of neurorehabilitation‐locomotor training after spinal cord injury. JNER 10:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Hurlbert RJ, Hamilton MG (2008) Methylprednisolone for acute spinal cord injury: 5‐year practice reversal. Can J Neurol Sci 35:41–45

    Article  PubMed  Google Scholar 

  • Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR (2005) Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 383:339–344

    Article  PubMed  Google Scholar 

  • Lammertse DP (2013) Clinical trials in spinal cord injury: lessons learned on the path to translation. The 2011 International Spinal Cord Society Sir Ludwig Guttmann Lecture. Spinal Cord 51:2–9

    Article  PubMed  Google Scholar 

  • Lammertse DP, Jones LA, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Falci SP, Heary RF, Choudhri TF, Jenkins AL, Betz RR, Poonian D, Cuthbert JP, Jha A, Snyder DA, Knoller N (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50:661–671

    Article  PubMed  Google Scholar 

  • Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G, Maia CAS, Capucho C, Hasse-Ferreira A, Peduzzi JD (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24:10–22

    Article  PubMed  Google Scholar 

  • Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19:4370–4387

    PubMed  Google Scholar 

  • Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    Article  PubMed Central  PubMed  Google Scholar 

  • Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G, Licina P (2008) Autologous olfactory ensheating cell transplantation in human paraplegia: A 3 year clinical trial. Brain 131:2376–2386

    Article  PubMed Central  PubMed  Google Scholar 

  • Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V (2000) Validation of the weight‐drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17:1–17

    Article  PubMed  Google Scholar 

  • Miao T, Wu D, Zhang Y, Bo X, Subang MC, Wang P, Richardson PM (2006) Suppressor of cytokine signaling‐3 suppresses the ability of activated signal transducer and activator of transcription‐3 to stimulate neurite growth in rat primary sensory neurons. J Neurosci 26:9512–9519

    Article  PubMed  Google Scholar 

  • Nathan PW (1994) Effects on movement of surgical incisions into the human spinal cord. Brain 117: 337‐46

    Google Scholar 

  • Nogradi A, Szabo A, Pinter S, Vrbova G (2007) Delayed riluzole treatment is able to rescue injured rat spinal motoneurons. Neuroscience 144:431–438

    Article  PubMed  Google Scholar 

  • Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2:263–273

    Article  PubMed  Google Scholar 

  • Raisman G (2003) A promising therapeutic approach to spinal cord repair. J R Soc Med 96:259–261

    Article  PubMed Central  PubMed  Google Scholar 

  • Reier (2004) Cellular Transplantation Strategies for Spinal Cord Injury and Translational Neurobiology. NeuroRx 1:424–451

    Article  PubMed Central  PubMed  Google Scholar 

  • Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini S-K, Emami-Razavi S-H, Rahimi-Movaghar V, Raza M, Firouzi M (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443:46–50

    Article  PubMed  Google Scholar 

  • Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD‐scid mouse model. PLoS One 5:e12272

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin‐associated neurite growth inhibitors. Nature 343:269–272

    Article  PubMed  Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Barde Y-A, Schwab ME (1994) Neurotrophin‐3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    Article  PubMed  Google Scholar 

  • Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94:245–256

    PubMed  Google Scholar 

  • Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal die‐ back, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    Article  PubMed  Google Scholar 

  • Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yanker BA (2011) Sustained axon regeneration induced by co‐deletion of PTEN and SOCS3. Nature 480:372–375

    Article  PubMed Central  PubMed  Google Scholar 

  • Uchida N, Chen K, Dohse M, Hansen KD, Dean J, Buser JR, Riddle A, Beardsley DJ, Wan Y, Gong X, Nguyen T, Cummings BJ, Anderson AJ, Tamaki SJ, Tsukamoto A, Weissman IL, Matsumoto SG, Sherman LS, Kroenke CD, Back SA (2012) Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med 4:155ra136

    Article  PubMed  Google Scholar 

  • Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126:1628–1637

    Article  PubMed  Google Scholar 

  • Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG (2005) Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 86:672–680

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Curt, A., Schenker, M. (2015). Aktueller Stand der Forschung. In: Strubreither, W., Neikes, M., Stirnimann, D., Eisenhuth, J., Schulz, B., Lude, P. (eds) Klinische Psychologie bei Querschnittlähmung. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1601-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1601-2_10

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1600-5

  • Online ISBN: 978-3-7091-1601-2

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics