Skip to main content

Hippocampal Projections to the Ventral Striatum: From Spatial Memory to Motivated Behavior

  • Chapter
  • First Online:
Space,Time and Memory in the Hippocampal Formation

Abstract

Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and neuromodulatory inputs upon arrival in the ventral striatum. Simultaneous neural recordings in the rat show that ventral striatal activity displays intricate timing relationships with the hippocampus, spanning multiple timescales and behavioral states, such as theta phase precession during reward approach and reactivation of place-reward associations during sleep. Disconnection of the hippocampus and ventral striatum results in impairments in the use of spatial information for place preference, as well as in location-appropriate responding to reward-predictive cues. Together, these findings indicate that spatial and contextual information from the hippocampus shapes reward-predictive activity in the ventral striatum, which in turn contributes to the learning and expression of place-reward associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following convention, we take this term to include the dentate gyrus, the “CA” subfields of Ammon’s horn, and the subiculum.

  2. 2.

    Following Heimer et al. (1997) and others (Voorn et al. 2004; Haber 2009), we define the ventral striatum as the nucleus accumbens core, shell, and the striatal bridges of the olfactory tubercule, while recognizing that boundaries with the ventral caudate-putamen may not be sharp.

  3. 3.

    We note that the extent to which dorsal CA1 place cells show reward-related organization is an issue of long-standing debate. For instance, Hollup et al. (2001) found increased place cell density near reward sites, but this effect does not always manifest (e.g., Lansink et al. 2009; Van der Meer et al. 2010). This debate would benefit greatly from a single study identifying the conditions under which such effects are present and absent.

References

  • Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT (2010) Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31:2292–2307

    PubMed Central  PubMed  Google Scholar 

  • Atallah HE, Lopez-Paniagua D, Rudy JW, O’Reilly RC (2007) Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci 10:126–131

    CAS  PubMed  Google Scholar 

  • Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, Zhang W-N, Pothuizen HHJ, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283

    CAS  PubMed  Google Scholar 

  • Bast T (2007) Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behavior. Rev Neurosci 18:253–281

    PubMed  Google Scholar 

  • Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes. Prog Neurobiol 70:319–345

    CAS  PubMed  Google Scholar 

  • Bast T, Zhang W-N, Feldon J (2001) The ventral hippocampus and fear conditioning in rats. Exp Brain Res 139:39–52

    CAS  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ, Lohman AH (1992) Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. J Neurosci 12:2079–2103

    CAS  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191:391–431

    CAS  Google Scholar 

  • Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG (1997) Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 9:902–911

    CAS  PubMed  Google Scholar 

  • Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:790–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brog J, Salyapongse A, Deutch A, Zahm D (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    PubMed  Google Scholar 

  • Carr GD, White NM (1983) Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sci 33:2551–2557

    CAS  PubMed  Google Scholar 

  • Dalley JW, Lääne K, Theobald DEH, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci USA 102:6189–6194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    CAS  PubMed  Google Scholar 

  • Derdikman D, Moser EI (2014) Spatial maps in the entorhinal cortex and adjacent structures. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Deshmukh SS (2014) Spatial and nonspatial representations in the lateral entorhinal cortex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Euston DR, Tatsuno M, McNaughton BL (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318:1147–1150

    CAS  PubMed  Google Scholar 

  • Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finch DM (1996) Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 6:495–512

    CAS  PubMed  Google Scholar 

  • Finch DM, Gigg J, Tan AM, Kosoyan OP (1995) Neurophysiology and neuropharmacology of projections from entorhinal cortex to striatum in the rat. Brain Res 670:233–247

    CAS  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    CAS  PubMed  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    CAS  PubMed  Google Scholar 

  • French SJ, Totterdell S (2002) Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens. J Comp Neurol 446:151–165

    PubMed  Google Scholar 

  • French SJ, Totterdell S (2003) Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 119:19–31

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    CAS  PubMed  Google Scholar 

  • Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812

    CAS  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2002) Timing-dependent limbic-motor synaptic integration in the nucleus accumbens. Proc Natl Acad Sci USA 99:13189–13193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grace AA (2010) Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox Res 18:367–376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groenewegen HJ, Room P, Witter MP, Lohman AH (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7:977–996

    CAS  PubMed  Google Scholar 

  • Groenewegen H, Der Zee EV-V, Te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    CAS  PubMed  Google Scholar 

  • Gruber AJ, Hussain RJ, O’Donnell P (2009) The nucleus accumbens: a switchboard for goal-directed behaviors. PLoS One 4:e5062

    PubMed Central  PubMed  Google Scholar 

  • Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106

    CAS  PubMed  Google Scholar 

  • Haber SN (2009) Anatomy and connectivity of the reward circuit. In: Dreher J-C, Tremblay L (eds) Handbook of reward and decision making, Academic Press, pp 3–27

    Google Scholar 

  • Heimer L, Alheid GF, De Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9:354–381

    CAS  PubMed  Google Scholar 

  • Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001) Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci 21:1635–1644

    CAS  PubMed  Google Scholar 

  • Hornevik T, Leergaard TB, Darine D, Moldestad O, Dale AM, Willoch F, Bjaalie JG (2007) Three-dimensional atlas system for mouse and rat brain imaging data. Front Neuroinformatics 1:4. doi:10.3389/neuro.11.004.2007

    Google Scholar 

  • Howland JG, MacKenzie EM, Yim TT, Taepavarapruk P, Phillips AG (2004) Electrical stimulation of the hippocampus disrupts prepulse inhibition in rats: frequency- and site-dependent effects. Behav Brain Res 152:187–197

    CAS  PubMed  Google Scholar 

  • Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417

    PubMed  Google Scholar 

  • Ito R, Canseliet M (2010) Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning. Neuropsychopharmacology 35:1440–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito R, Hayen A (2011) Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. J Neurosci 31:6001–6007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito R, Robbins TW, McNaughton BL, Everitt BJ (2006) Selective excitotoxic lesions of the hippocampus and basolateral amygdala have dissociable effects on appetitive cue and place conditioning based on path integration in a novel Y-maze procedure. Eur J Neurosci 23:3071–3080

    PubMed Central  PubMed  Google Scholar 

  • Ito R, Robbins TW, Pennartz CM, Everitt BJ (2008) Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci 28:6950–6959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jadhav SP, Frank LM (2014) Memory replay in the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15:535–547

    PubMed  Google Scholar 

  • Johnson A, Redish AD (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 27:12176–12189

    CAS  PubMed  Google Scholar 

  • Kelley A, Domesick V (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335

    CAS  PubMed  Google Scholar 

  • Khamassi M, Mulder AB, Tabuchi E, Douchamps V, Wiener SI (2008) Anticipatory reward signals in ventral striatal neurons of behaving rats. Eur J Neurosci 28:1849–1866

    PubMed  Google Scholar 

  • Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser M-B (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143

    CAS  PubMed  Google Scholar 

  • Kruse JM, Overmier JB (1983) Pavlovian conditioned stimulus effects upon instrumental choice behavior are reinforcer specific. Learn Motiv 181:165–181

    Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, Joosten RNJMA, McNaughton BL, Pennartz CMA (2008) Preferential reactivation of motivationally relevant information in the ventral striatum. J Neurosci 28:6372–6382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CMA (2009) Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7:e1000173

    PubMed Central  PubMed  Google Scholar 

  • Lansink CS, Jackson JC, Lankelma JV, Ito R, Robbins TW, Everitt BJ, Pennartz CMA (2012) Reward cues in space: commonalities and differences in neural coding by hippocampal and ventral striatal ensembles. J Neurosci 32:12444–12459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie AM, Mizumori SJY (1994) Spatial-, movement- and reward-sensitive discharge by medial ventral striatum neurons in rats. Brain Res 638:157–168

    CAS  PubMed  Google Scholar 

  • Legault M, Rompré PP, Wise RA (2000) Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J Neurosci 20:1635–1642

    CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb J, Barnes C, Moser E (2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309:619–623

    CAS  PubMed  Google Scholar 

  • Lever C, Kaplan R, Burgess N (2014) The function of oscillations in the hippocampal formation. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    CAS  PubMed  Google Scholar 

  • Lodge DJ, Grace AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32:507–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G (2011) Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333:353–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacAskill AF, Little JP, Cassel JM, Carter AG (2012) Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens. Nat Neurosci 15:1624–1626

    CAS  PubMed  Google Scholar 

  • Malhotra S, Cross RW, Van der Meer MAA (2012) Theta phase precession beyond the hippocampus. Rev Neurosci 23:39–65

    PubMed  Google Scholar 

  • Martin PD (2001) Locomotion towards a goal alters the synchronous firing of neurons recorded simultaneously in the subiculum and nucleus accumbens of rats. Behav Brain Res 124:19–28

    CAS  PubMed  Google Scholar 

  • Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau J-M, Valjent E, Hervé D, Girault J-A (2009) Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One 4:e4770

    PubMed Central  PubMed  Google Scholar 

  • McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    CAS  PubMed  Google Scholar 

  • Mizumori SJ (2007) Hippocampal place cells: relevance to learning and memory. Oxford University Press, Oxford

    Google Scholar 

  • Mizuseki K, Diba K, Pastalkova E, Buzsáki G (2011) Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat Neurosci 14:1174–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    CAS  PubMed  Google Scholar 

  • Morris RGM (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur J Neurosci 23:2829–2846

    CAS  PubMed  Google Scholar 

  • Mulder AB, Hodenpijl MG, Da Silva FHL (1998) Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs. J Neurosci 18:5095–5102

    CAS  PubMed  Google Scholar 

  • Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 191:521–550

    CAS  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    CAS  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    PubMed  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    CAS  PubMed  Google Scholar 

  • Papp E, Borhegyi Z, Tomioka R, Rockland KS, Mody I, Freund TF (2012) Glutamatergic input from specific sources influences the nucleus accumbens-ventral pallidum information flow. Brain Struct Funct 217:37–48

    CAS  PubMed  Google Scholar 

  • Peleg-Raibstein D, Feldon J (2006) Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology 51:947–957

    CAS  PubMed  Google Scholar 

  • Pennartz CM, Kitai ST (1991) Hippocampal inputs to identified neurons in an in vitro slice preparation of the rat nucleus accumbens: evidence for feed-forward inhibition. J Neurosci 11:2838–2847

    CAS  PubMed  Google Scholar 

  • Pennartz CMA, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: {A}n integration of behavioural, electrophysiological, and anatomical data. Prog Neurobiol 42:719–761

    CAS  PubMed  Google Scholar 

  • Pennartz CMA, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL (2004) The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 24:6446–6456

    CAS  PubMed  Google Scholar 

  • Pennartz CMA, Ito R, Verschure PFMJ, Battaglia FP, Robbins TW (2011) The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends Neurosci 34:548–559

    CAS  PubMed  Google Scholar 

  • Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–296

    CAS  PubMed  Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41:245–251

    PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    CAS  PubMed  Google Scholar 

  • Royer S, Sirota A, Patel J, Buzsáki G (2010) Distinct representations and theta dynamics in dorsal and ventral hippocampus. J Neurosci 30:1777–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitzer-Torbert N, Redish AD (2002) Development of path stereotypy in a single day in rats on a multiple-T maze. Arch Ital Biol 140:295–301

    CAS  PubMed  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    PubMed  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    CAS  PubMed  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    PubMed Central  PubMed  Google Scholar 

  • Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279

    CAS  PubMed  Google Scholar 

  • Shibata R, Mulder AB, Trullier O, Wiener SI (2001) Position sensitivity in phasically discharging nucleus accumbens neurons of rats alternating between tasks requiring complementary types of spatial cues. Neuroscience 108:391–411

    CAS  PubMed  Google Scholar 

  • Skaggs WE, Mcnaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873

    CAS  PubMed  Google Scholar 

  • Szydlowski SN, Pollak Dorocic I, Planert H, Carlen M, Meletis K, Silberberg G (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33:1678–1683

    CAS  PubMed  Google Scholar 

  • Tabuchi ET, Mulder AB, Wiener SI (2000) Position and behavioral modulation of synchronization of hippocampal and accumbens neuronal discharges in freely moving rats. Hippocampus 10:717–728

    CAS  PubMed  Google Scholar 

  • Taverna S, Van Dongen YC, Groenewegen HJ, Pennartz CMA (2004) Direct physiological evidence for synaptic connectivity between medium-sized spiny neurons in rat nucleus accumbens in situ. J Neurophysiol 91:1111–1121

    PubMed  Google Scholar 

  • Totterdell S, Meredith GE (1997) Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience 78:715–729

    CAS  PubMed  Google Scholar 

  • Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88:1263–1269

    PubMed  Google Scholar 

  • Van der Meer MAA, Redish AD (2009) Covert expectation-of-reward in rat ventral striatum at decision points. Front Integr Neurosci 3:1

    PubMed Central  PubMed  Google Scholar 

  • Van der Meer MAA, Redish AD (2010) Expectancies in decision making, reinforcement learning, and ventral striatum. Front Neurosci 4:6

    PubMed Central  PubMed  Google Scholar 

  • Van der Meer MAA, Redish AD (2011a) Ventral striatum: a critical look at models of learning and evaluation. Curr Opin Neurobiol 21:387–392

    PubMed Central  PubMed  Google Scholar 

  • Van der Meer MAA, Redish AD (2011b) Theta phase precession in rat ventral striatum links place and reward information. J Neurosci 31:2843–2854

    PubMed Central  PubMed  Google Scholar 

  • Van der Meer MAA, Johnson A, Schmitzer-Torbert NC, Redish AD (2010) Triple dissociation of information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial decision task. Neuron 67:25–32

    PubMed  Google Scholar 

  • Van der Meer MAA, Kurth-Nelson Z, Redish AD (2012) Information processing in decision-making systems. Neuroscientist 18:342–359

    PubMed  Google Scholar 

  • Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474

    CAS  PubMed  Google Scholar 

  • Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292:1175–1178

    CAS  PubMed  Google Scholar 

  • Wilson MA, Mcnaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679

    CAS  PubMed  Google Scholar 

  • Wimmer GE, Shohamy D (2011) The striatum and beyond: hippocampal contributions to decision making. In: Delgado M, Phelps E, Robbins TW (eds) In attention and performance XXII. Oxford University Press, Oxford

    Google Scholar 

  • Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system, 3rd edn. Academic, San Diego, CA, pp 637–703

    Google Scholar 

  • Witter MP, Groenewegen HJ (1990) The subiculum: cytoarchitectonically a simple structure, but hodologically complex. Prog Brain Res 83:47–58

    CAS  PubMed  Google Scholar 

  • Witter MP, Ostendorf RH, Groenewegen HJ (1990) Heterogeneity in the dorsal subiculum of the rat. Distinct neuronal zones project to different cortical and subcortical targets. Eur J Neurosci 2:718–725

    PubMed  Google Scholar 

  • Wolf JA, Finkel LH, Contreras D (2009) Sublinear summation of afferent inputs to the nucleus accumbens in the awake rat. J Physiol 587:1695–1704

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tobias Bast for discussion. This work was supported by the Netherlands Organization for Scientific Research (VENI 863.10.013 to MvdM and 863.11.010 to C.S.L., VICI 918.46.609 to C.M.A.P.) and the National Science and Engineering Research Council (Canada, R.I. and MvdM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs A. A. van der Meer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

van der Meer, M.A.A., Ito, R., Lansink, C.S., Pennartz, C.M.A. (2014). Hippocampal Projections to the Ventral Striatum: From Spatial Memory to Motivated Behavior. In: Derdikman, D., Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1292-2_18

Download citation

Publish with us

Policies and ethics